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This paper presents a new algorithm for computing Boolean operations on polygons.
These kind of operations are frequently used in the geosciences in order to get spatial
information from spatial data modeled as polygons. The presented algorithm is simple
and easy to understand and implement. Let n be the total number of edges of all the
polygons involved in a Boolean operation and k be the number of intersections of all the
polygon edges. Our algorithm computes the Boolean operation in time O((n + k) log(n)).

Finally, the proposed algorithm works with concave polygons with holes, and with
regions composed of polygon sets. Furthermore, it can be easily adapted to work with
self-intersecting polygons.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Polygon overlay, which is also referred to as polygon
clipping or polygon intersection, operations determine the
spatial coincidence (if any) of two polygon data layers,
usually creating a new polygon layer in the process.
Polygon overlay techniques are often used by field
scientists to explore the relationships between spatial
attributes, stored as layers in a geophysical data model.
Examples of polygon data are: tectonic plates, biomes,
watersheds or sea ice. For example, Fig. 1 shows two
polygons representing the sea ice coverage over two time
periods. A Boolean operation on the polygons can be used
to visualize and get information about the changes in sea
ice coverage over time. For example, P — Q represents the
coverage area gained during the period, and Q — P the
coverage area lost—it is supposed that Q represents a time
previous to P.

There is a slight difference between polygon clipping
and polygon intersection. The former refers to when
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several polygons are clipped against the same clipping
polygon. Many efficient algorithms exist for polygon
clipping (Foley et al., 1990). However, most of them are
limited to certain types of polygons, for instance,
Andereev (1989) and Sutherland and Hodgeman (1974)
algorithms require a convex clip polygon, while the
algorithm by Liang and Barsky (1983) requires a rectan-
gular clip polygon.

For the general case of polygons, i.e. concave polygons
with holes and self-intersections, less solutions are
available. Furthermore, some of the solutions need
complex, specific data structures as it is the case of Weiler
(1980) algorithm.

Greiner and Hormann (1998) propose a new algorithm
for clipping polygons. The algorithm is very easy to
understand and implement. In addition, it is very fast,
especially for self-intersecting polygons. Nevertheless, the
algorithm treats degeneracy, which occurs when a vertex
of a polygon lies on an edge of the other, by perturbing the
position of the vertex. Fig. 2 shows that perturbation is not
always a good solution. As can be seen the result of the
Boolean operation P — Q depends on the kind of perturba-
tion, on the left figure a polygon with a hole is obtained,
on the right figure a polygon with two regions is obtained.
Liu et al. (2007) propose some optimizations to Greiner
and Hormann'’s algorithm, and explain how the algorithm
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can be adapted to work with polygons with holes and
regions composed of polygon sets. Unfortunately, they do
not bring new solutions to the degeneracy problem.

In this paper we propose a new algorithm for
computing Boolean operations on polygons. The algorithm
is very easy to understand, among other things because it
can be seen as an extension of the classical algorithm,
based on the plane sweep, for computing the intersection
points between a set of segments, see Preparata and
Shamos (1985). When a new intersection between the
edges of polygons is found, our algorithm subdivides
the edges at the intersection point. This produces a plane
sweep algorithm with only two kind of events: left and
right endpoints, making the algorithm quite simple.
Furthermore, the subdivision of edges provides a simple
way of processing degeneracies.

It must be noted that Vatti (1992) algorithm is also
based on the plane sweep paradigm. However, our
algorithm is quite different than Vatti’s one. Concretely,
our algorithm takes a different, more efficient, approach

Fig. 1. Sea ice coverage over two time periods.
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for computing the intersections between the edges of the
polygons involved in the Boolean operation, making our
algorithm much faster than Vatti’s one for the computa-
tion of Boolean operations for large polygons.

The remainder of the paper is structured as follows. In
the next section the theoretical background on which the
algorithm is based is stated. In Section 3 the overall
algorithm is described. Sections 4 and 5 explain how the
edges belonging to the result of the Boolean operation are
selected and connected to form the solution. Section 6
makes a complexity analysis of the algorithm. Section 7
describes how the special cases of the algorithm are
processed. In Section 8 a comparison with Vatti’s and
Greiner and Hormann’s algorithms is made. Finally,
Section 9 brings some conclusions.

2. Basics

A natural way to represent a polygon is by listing its
vertices in counter-clockwise order: vg,vq,V3,..., Vs The
ordered list of edges vgUy,V1Vs,...,UaV9 defines the
polygon boundary.

The boundary of the result of a Boolean operation on
two polygons consists of those portions of the boundary of
each polygon that lie or do not lie, depending on the type
of operation, inside the other polygon. For example, Fig. 3
shows the results of different Boolean operations on two
polygons. Therefore, the computation of a Boolean opera-
tion is reduced to finding these portions. Once found, they
must be connected to form the result polygon.

Suppose that the edges of two polygons are subdivided
at their intersection points, see Fig. 4. In this case the
boundaries of the polygons intersect at endpoints of
some of their edges. Therefore, the problem of computing
the boundary of the result of a Boolean operation on the
polygons is reduced to finding those edges of each polygon

P-Q

Fig. 2. Depending on kind of perturbation different solutions are obtained.

Polygons P and Q Intersection

P

Union P-Q

Fig. 3. Boolean operations on polygons.
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Fig. 4. Subdivision of edges of polygons at their intersection points.

that lie or do not lie, depending on the type of operation,
inside the other polygon. Again, once these edges
are found they must be connected to form the result
polygon.

We can therefore sketch the following approach for
computing Boolean operations on polygons:

(1) Subdivide the edges of the polygons at their intersec-
tion points.

(2) Select those subdivided edges that lie inside the other
polygon—or that do not lie depending on the opera-
tion.

(3) Join the edges selected in step 2 to form the result

polygon.

The algorithm proposed in this paper uses the
plane sweep technique to efficiently implement this
approach.

3. The algorithm

In this section we describe the algorithm for comput-
ing Boolean operations on polygons. In order to subdivide
the edges of the polygons we must first find their
intersection points. This task can be efficiently done using
the following principle: suppose that the plane is swept
with a vertical line. At every moment the edges that
intersect the sweep-line are stored, ordered from bottom
to top as they intersect the sweep-line, in a data structure
S. Then, it can be proved that: (1) the status of S only
changes when the sweep-line reaches an endpoint or an
intersection point of the edges and (2) only edges that are
adjacent along S can intersect. The classical algorithm for
computing the intersection points between a set of
segments is based on this principle given by Preparata
and Shamos (1985).

Our algorithm also uses this approach to efficiently
find the intersection points between the edges of the
polygons. Furthermore, the information available during
the plane sweep is used to subdivide the edges and decide
which of them should be included in the result of the
Boolean operation. The algorithm is described next.

We use a vertical line to sweep the plane from left to
right. The sweep-line status, S, consists of the ordered
sequence of the edges of both polygons intersecting the

vertical line. S will only change at the endpoints of the
edges:

e When the left endpoint of an edge is reached the edge
must be added to S.

e When the right endpoint is reached the edge must be
removed from S.

Therefore, the event-point set is formed by the endpoints
of the edges of the polygons. This set changes dynamically
because when an edge is subdivided two new endpoints
appear. The algorithm implements the event-point set
using a priority queue that holds the endpoints sorted
from left to right.

Now, we can describe the algorithm, see Fig. 5. Firstly,
the endpoints of the edges are placed into a priority queue
sorted by x coordinate. Then the endpoints are proces-
sed—from left to right—as follows. When a left endpoint
is found its associated edge is inserted into the sweep line
status (S). Then, following the approach explained in
Section 4, it is computed if the edge lies inside the other
polygon. Possible intersections with its neighbors along S
must also be processed. When a right endpoint is found its
associated edge is removed from S. Now, its two neighbors
along S become adjacent, and are tested for intersection.
The removed edge is also considered for inclusion in the
result of the Boolean operation.

The procedure possiblelnter is used to detect and process
a possible intersection between two edges. If the edges
belong to the same polygon or they only intersect at one of
their endpoints no extra processing is required. If the edges
belong to different polygons and they intersect at a point
interior to one of the edges then they must be subdivided.
When an edge is subdivided the data structures Q and S are
updated to reflect the new status. Fig. 6 shows the types of
intersections that lead to the subdivision of an edge and how
they are processed. We have used the intersection routine
described in Schneider and Eberly (2003) for detecting a
possible intersection between two edges.

Let us see an example of edge subdivision, see Fig. 7.
When the sweep-line reaches the point p;, we have S is
{293,919 }- Then, the left endpoint of p;p, is processed,
and p;p, is inserted into S (S = {q,q3.9192,P1P2})- PiP2
intersects with its neighbor q;q, at point i, so p;p, and
G;q; must be subdivided into edges pi, ip,,q;i and iq,. Q
must be updated to include the endpoints of these new




1180 F. Martinez et al. /| Computers & Geosciences 35 (2009) 1177-1185

01. Insert the endpoints of the edges of polygons into priority queue Q
02. while (! Q.empty ) {

03. event = Q.top ();

04. Q.pop O;

05. if (event.left_endpoint ()) {

06. pos = S.insert (event);

07. event.setInsideOtherPolygonFlag (S.prev (pos));
08. possibleInter (pos, S.next (pos));

09. possibleInter (pos, S.prev (pos));

10.  } else { // the event is a right endpoint

11. pos = S.find (*event.other);

12. next = S.next (pos);

13. prev = S.prev (pos);

14. if (event.insideOtherPolygon ()) Intersection.add (event.segment ());
15. if (! event.insideOtherPolygon ()) Union.add (event.segment ());

16. S.erase (pos);

17. possibleInter (prev, next);

8. }

19. }

Fig. 5. Algorithm.
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Fig. 6. Types of intersections that lead to a subdivision. 4. Selecting the result edges
edges. S will also change to S = {q,q5, i9,, p11}. After this, When the sweep-line reaches the right endpoint of an
the left endpoint of pyp; is processed, and p,p; is inserted edge e the algorithm decides if e belongs to the result of

into S (S = {q3Gs,192. P11, DoP1})- the Boolean operation. As outlined in Section 2, this
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struct SweepEvent {

Point p;

// point associated with the event

SweepEvent *other; // event associated to the other endpoint of the edge

bool left; // is the point the left endpoint of the edge (p, other->p)?

PolygonType pl;
bool inOut;
bool inside; // 1s the edge

EdgeType type;

// it can be SUBJECT or CLIPPING
// inside-outside transition into the polygon
(p, other->p) inside the other polygon?

// used for overlapping edges

Fig. 8. Data structure for representing events/edges.

void setInsideFlag (SweepEvent* le, SweepEvent* ple) {
if (ple == NULL) {
le->inside = le->inOut = false;
} else if (le->pl == ple->pl) { // same polygon ?

le->inside = ple->inside;

le->inOut = ! ple->inOut;
} else {

le->inside = ! ple->inOut;

le->inOut = ple->inside;

Fig. 9. Routine to set inside and inOut flags of edges.

decision is made by testing if e lies inside the other
polygon P.

In the algorithm we compute if e lies inside P when e is
inserted into S. We can easily make this computation after
reading three flags of information from the edge that
precedes e in S. In Fig. 8 we suggest a data structure for
representing an endpoint of an edge—an event-point—
that implicitly represents its associated edge—we insert
into S the left endpoint of the segments. The three flags
from the preceding edge that have to be read are:

e pl: indicates if the edge belongs to the subject or
clipping polygon.

e inOut: indicates if the edge determines an inside-
outside transition into the polygon, to which the edge
belongs, for a vertical semi-line that goes up and
intersects the edge.

e inside: indicates if the edge is inside the other polygon.
Fig. 9 shows a routine that computes the inOut and inside
flags of a left endpoint event le, that has been inserted
into S, given the left endpoint event ple of the immediate
predecessor of le in S. If ple is null then le is the first event
in S and the flags can be trivially set to false.

To correctly apply this routine endpoints placed at the
same x coordinate must be processed—that is, sorted into
the priority queue—from bottom to top. If two endpoints
share the same point the right endpoints must be

processed before the left ones. If two left endpoints share
the same point then they must be processed in the
ascending order of their associated edges in S.

5. Connecting the result edges to form the solution

The result of a Boolean operation on two polygons is a
set, possibly empty, of polygons. In the previous sections
we have described how to find the edges of these
polygons. Next, we show how these edges can be
connected to form the result polygons.

We must hold a set C—initially empty—of chains of
connected edges and a set R that holds the result
polygons. Every edge e that belongs to the solution must
be processed as follows:

e [f e cannot be connected at any of the ends of any chain
of C, then a new chain, formed by e, is added to C.

e If e can be connected to only one chain c of C, then e is
added to c. If the first and last edges in c are connected,
then c holds a result polygon and it is moved to R.

e If e can be connected to two chains ¢; and ¢, of C, then
the edges of ¢, and e are added to ¢y, and c; is removed
from C. If the first and last edges in c; are connected
then c; is moved to R.

6. Performance analysis

In this section we analyze the performance of the
algorithm shown in Fig. 5. We will use the following
notation: let n be the total number of edges of all the
polygons involved in the Boolean operation and k be the
number of intersections of all the polygon edges.

The algorithm starts inserting all the endpoints of the
edges on Q, which takes O(n log(n)). Then the plane sweep
starts and all the events are processed in the cycle. Let us
analyze the cycle body:

e Lines 6, 11-13 and 16 are operations on S. S holds at
most n edges and it can be implemented as a
dictionary, so these lines take each O(log(n)).

e Line 7 runs in time O(log(n)), since this is the time
needed to determinate the immediate predecessor of
the event in S—the routine used to set the inside and
inOut flags runs in time O(1).
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e The function possiblelnter takes O(log(n + k)), because
after an intersection test, which uses constant time,
four insertions on Q can be done, and Q has an O(n + k)
size.

e Line 3 runs in constant time, and line 4 takes
O(log(n + k)).

e Finally, the inclusion of an edge in the result poly-
gons—lines 14 and 15—which is treated in Section 5,
takes O(log(n)). There can be at most n chains of
connected edges in which to include the edge. The
endpoints of the chains can be stored in a dictionary, so
that finding the chain that joins with the edge runs in
time O(log(n)). The remainder of operations—joining
and edge to a chain or joining two chains—can be
implemented in constant time.

Therefore, we can conclude that the cycle body runs in
time O(log(n + k)). The cycle is executed (n + 4k) times so
the cycle takes O((n+ k)log(n + k)), i.e. O(n+ k)log(n),
since k<n?. This time clearly dominates the initial
O(nlog(n)) step 1, so the whole algorithm runs in time
O(n + k) log(n).

7. Special cases

In this section we discuss the special cases of the
algorithm. As it will be shown they are treated in a simple,
elegant way.

7.1. Vertical edges

Vertical edges are special because their two endpoints
are placed at the same x coordinate. However, they can be
processed by the algorithm as “normal edges” as long as
the following simple rules are met:

(1) The lower endpoint of a vertical edge must be
considered as its left endpoint and the upper endpoint
as its right endpoint.

(2) To order the sweep-line status (S) it must be
considered that a vertical edge intersects the sweep-
line at the y coordinate of its lower endpoint—

INTERSECTION
Overlapping edges with the same

inOut flags

remember that S is ordered by the y coordinate at
which edges intersect the sweep-line. If a non-vertical
edge intersects the sweep-line at the lower endpoint
of a vertical edge, then the vertical edge is placed in
S after the non-vertical edge.

7.2. Overlapping edges

When two edges overlap they are subdivided so that
their overlapping fragments become an edge of each
polygon—see the last type of intersection in Fig. 6. The
algorithm must select at most one of these two “equal
edges” as part of the result of the Boolean operation.
Unfortunately, the methods explained in Section 4 to
select the result edges does not work for overlapping
edges. Therefore, the two “equal edges” representing an
overlapping fragment need a special processing, which is
described next.

When overlapping between two edges is detected one
of the edges representing the overlapping fragment is
labeled as NON_CONTRIBUTING, meaning that the edge
will not be considered for inclusion in the result of the
Boolean operation. The other edge is labeled as SAME_
TRANSITION or DIFFERENT_TRANSITION depending on
the overlapping edges having the same inOut flag, and it
will be included in the result depending on its label and
on the type of Boolean operation. Edges labeled as

Fig. 11. Example of self-intersecting polygon.

UNION P-Q

Overlapping edges with different
inOut flags

Fig. 10. Inclusion of overlapping edges in result of Boolean operations.
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Fig. 12. Subject and clipping polygons.
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Fig. 13. Intersection.

SAME_TRANSITION are only included in the result of
union and intersection operations. Edges labeled as
DIFFERENT_TRANSITION are only included in the result
of set theoretic difference operations. Fig. 10 shows how
overlapping fragments are included in the result of
Boolean operations depending on the inOut flag of the
overlapping edges and on the type of Boolean operation.

7.3. Self-intersecting polygons

When the boundary of a polygon crosses itself, the
polygon is called self-intersecting. Fig. 11 shows a polygon
set consisting of three individual polygons: a square, a
triangle inside the square—a hole—and a self-intersecting
bow-tie shaped polygon that, in turn, intersects with the
square. To know whether a point belongs to the interior of
the polygon the even-odd rule can be applied: let r be a
ray thrown from the point to infinity in any direction, such
as the ray does not cross any polygon vertex or self-
intersecting point, and let ¢ be the number of times that
r crosses the boundary of the polygon. Then, the point is
inside the polygon if ¢ is odd—and outside if c is even.

The algorithm does not work for polygons with self-
intersections. The reason is simple: the algorithm is not
aware of self-intersection points. However, these points
should be processed as events of the plane sweep because

self-intersecting edges should exchange their positions at
the sweep-line status at their intersection points.

Fortunately, a small change in the algorithm can make
it work for this kind of polygons. It is enough to find and
process intersection points not only between the edges of
different polygons, but also of the same polygon. In this
case, self-intersecting edges will be also subdivided at
their intersection points, and therefore, the result poly-
gons will not contain self-intersections.

8. Evaluation

In this section we compare Greiner and Hormann'’s and
Vatti’s algorithms with the one presented in this paper.
We have implemented Greiner and Hormann’s and
our algorithm in C++, due to Vatti’s algorithm being
difficult to implement we have used the implementation
available at the website.! To implement our algorithm we
have used an STLs priority queue container to represent
the event queue and an STLs set container to represent
the status line. The programs have been executed on a
Intel Pentium IV processor at 2.4 GHz under Linux. Fig. 12
shows a polygon representing the coastline of the

! General Polygon Clipper library, by Alan Murta, http://www.cs.man.
ac.uk/toby/alan/software/
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Fig. 15. Difference.

Table 1
Execution times of intersection operations (in seconds).

Number of Greiner Vatti New Number of
vertices algorithm intersections
76696 x 32 0.03 0.55 0.16 178

76696 x 648 021 0.58 0.16 814

76696 x 3895 4.01 216 0.22 4294

76696 x 15580 17.04 6.30 0.38 8978

Earth and its main lakes and a second polygon set
consisting in several squares. Figs. 13, 14 and 15 show
the result of the Boolean intersection, union and differ-
ence, respectively.

We have computed the intersection of the polygon
representing the Earth with several polygon sets with an
increasing number of squares, the result are presented in
Table 1. The last column of the table presents the number
of intersections between the edges of the polygons.
Clearly, our algorithm performs better when the number
of edges is increased. To understand this it must be said
that Boolean operation algorithms spend the majority of
their CPU time computing the intersection points between
the polygons. The analyzed algorithms use different
approaches to compute these points:

e Greiner and Hormann’s algorithm uses the brute force
approach. Of course, Greiner and Hormann’s algorithm
could also use a plane sweep technique to compute the
intersection points for large polygons.

e Our algorithm uses the classical plane sweep approach.
Edges are only tested for intersection when they
become adjacent in the status line. At most a pair of
intersection tests are computed during the processing
of a plane sweep event.

e Although Vatti’s algorithm is also based on the plane
sweep technique, it is very different from our algo-
rithm. For example, it does not use the classical plane
sweep approach for computing the intersection points:
in Vatti's algorithm during the processing of a plane
sweep event each edge in the status line has to be
tested for intersection with its immediate predecessor
edge in the status line. Obviously, this approach is
slower than our method that, as mentioned above, only
needs a pair of intersection tests for each plane sweep
event processed.

9. Conclusions

In this paper we have proposed a new algorithm for
computing Boolean operations on polygons. The algorithm
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is based on the classical plane sweep technique for
computing the intersection points between a set of
segments. Our algorithm subdivides the edges of the
polygons at their intersection points. This subdivision
makes the algorithm quite simple, allowing an elegant
way of processing degeneracies.

The proposed algorithm computes a Boolean operation
in time O((n + k) log(n)), where n is the total number of
edges of all the polygons involved in the Boolean
operation and k is the number of intersections of all the
polygon edges.

Unlike some approaches, the proposed algorithm does
not need to be adapted to work with polygons with holes,
and with regions composed of polygon sets.
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