
Computers & Graphics: X 2 (2019) 10 0 0 07

Contents lists available at ScienceDirect

Computers & Graphics: X

journal homepage: www.elsevier.com/locate/cagx

Technical Section

Clipping simple polygons with degenerate intersections

�

Erich L Foster a , Kai Hormann

b , ∗, Romeo Traian Popa

c

a Carnegie Robotics, LLC, 4501 Hatfield Street, Pittsburgh, PA 15201, USA
b Faculty of Informatics, Università della Svizzera italiana, Via Giuseppe Buffi 13, Lugano 6904, Switzerland
c Faculty of Mechanical Engineering and Mechatronics, Politehnica University of Bucharest, Splaiul Independen ̧t ei 313, Bucure ̧s ti 060042, Romania

a r t i c l e i n f o

Article history:

Received 10 April 2019

Revised 29 May 2019

Accepted 3 June 2019

Available online 12 June 2019

MSC:

68U05

Keywords:

Polygon clipping

Degenerate intersections

a b s t r a c t

Polygon clipping is a frequent operation in many fields, including computer graphics, CAD, and GIS. Thus,

efficient and general polygon clipping algorithms are of great importance. Greiner and Hormann (1998)

propose a simple and time-efficient algorithm that can clip arbitrary polygons, including concave and

self-intersecting polygons with holes. However, the Greiner–Hormann algorithm does not properly han-

dle degenerate intersection cases, without the undesirable need for perturbing vertices. We present an

extension of the Greiner–Hormann polygon clipping algorithm that properly deals with such degenerate

cases.

© 2019 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

i

s

s

t

a

c

v

c

g

w

p

i

fi

c

i

o

p

p

i

c

s

c

a

f

c

j

p

n

c

h

W

t

(

I

e

(

e

o

2

h

2

(

. Introduction

Polygon clipping is an indispensable tool in computer graph-

cs [2] , computer aided design (CAD) [3] , geographic information

ystems (GIS) [4] , and computational sciences [5] . Applications

uch as VLSI circuit design [6] as well as numerical simulations

ypically require polygon clipping to be done thousands of times,

nd in GIS the polygons that are to be clipped are generally non-

onvex, possibly with holes and may have several thousands of

ertices [7] . Therefore, efficient and general algorithms for polygon

lipping are very important.

Weiler and Atherton [8] were the first to present a clipping al-

orithm for convex and concave polygons with holes. Their idea

as developed further by Greiner and Hormann [1] , who pro-

ose a simple and efficient algorithm that can also deal with self-

ntersecting polygons, just like Vatti’s algorithm [9] , which was the

rst to handle this most general setting.

The main advantage of the Greiner–Hormann algorithm, as

ompared to Vatti’s algorithm, lies in its simplicity [10] , but there

s one serious limitation: degenerate intersections. If a vertex of

ne polygon lies on an edge or coincides with a vertex of the other

olygon, then the algorithm fails. Greiner and Hormann suggest

erturbing polygon vertices to deal with degenerate cases, which

s sufficient in computer graphics, since the result remains visually
� This article was recommended for publication by L. Barthe.
∗ Corresponding author.

E-mail address: kai.hormann@usi.ch (K. Hormann).

A

R

f

t

ttps://doi.org/10.1016/j.cagx.2019.10 0 0 07

590-1486/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
orrect as long as the perturbations are smaller than the size of the

creen pixels. However, in most other applications the inaccuracy

aused by the perturbation is undesirable.

Kim and Kim [3] present an extension of the Greiner–Hormann

lgorithm that deals with these degenerate cases without the need

or perturbing polygon vertices. However, the method requires cal-

ulating the inside/outside status of the midpoints of all edges ad-

acent to an intersection, inducing a considerable additional com-

utational cost. In the sections that follow we present an alter-

ative approach for dealing with degeneracies that avoids these

ostly computations. Another, albeit less efficient method that can

andle these cases is the flooding-based clipping algorithm by

ang and Manocha [11] .

We start by briefly summarizing the problem (Section 2) and

he original Greiner–Hormann algorithm, including its failure cases

 Section 3), before presenting the proposed extensions (Section 4).

n particular, the detection and classification of all possible degen-

rate intersections (Section 4.1) and the labelling of intersections

 Section 4.2) are discussed in detail. After presenting a number of

xamples (Section 5), we conclude the paper with a discussion of

ur algorithm’s advantages and limitations (Section 6).

. Polygon clipping

Let us begin by formally defining the clipping problem.

 planar polygon P = [P 1 , P 2 , . . . , P n] with n ≥ 3 vertices P i ∈

2 is defined as the piecewise linear, closed path that is

ormed by joining the edges [P 1 , P 2] , [P 2 , P 3] , . . . , [P n −1 , P n] , [P n , P 1]

hat consecutively connect the vertices P i in the given order
 under the CC BY-NC-ND license.

https://doi.org/10.1016/j.cagx.2019.100007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cagx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cagx.2019.100007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:kai.hormann@usi.ch
https://doi.org/10.1016/j.cagx.2019.100007
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07

a b c d
Fig. 1. Examples of a single simple polygon (a), a simple complex polygon with three components and one hole (b), a single self-intersecting polygon (c), and a complex

self-intersecting polygon with three components (d), with their interiors shaded.

a b c
Fig. 2. Example of polygon clipping: the intersection of a simple polygon P with three components and one hole (a) and a self-intersecting polygon Q with one component

(b) gives a result polygon R with two components, one of them simple, the other self-intersecting (c).

a b c
Fig. 3. For two given polygons P and Q (a), the Greiner–Hormann algorithm first computes all intersection points (), then marks them as entry () or exit () points

for both polygons (b), and finally generates the result polygon R (c).

a

s

3

o

p

b

I

o

v

t

l

s

p

t

P

s

r

d

v

v
(see Fig. 1 a,c). A complex polygon P = { P 1 , P 2 , . . . , P m

} is a set of

m ≥ 1 polygons P j , called the components of P (see Fig. 1 b,d). We

follow the convention that the interior of P is determined by the

even-odd rule [2] and consists of all points p ∈ R

2 which do not

lie on any of the edges of P and for which a ray drawn from p

to infinity in any direction crosses P an odd number of times. Be-

cause of this definition, components that are inside other compo-

nents are commonly referred to as holes (see Fig. 1 b). For the sake

of brevity, we consider single polygons as complex polygons with

one component and refer to complex polygons simply as polygons.

A polygon is called simple if it does not cross itself, that is, its edges

intersect only at common endpoints, which in turn is equivalent to

the property that its half-open edges do not intersect at all. Each

component of a simple polygon is thus topologically equivalent to

a circle (see Fig. 1 a,b).

Polygon clipping usually refers to computing the intersection

P ∩ Q of the interiors of two polygons P and Q , often called the

clip and the subject polygon, which is itself a region bounded by a

polygon R (see Fig. 2). Most clipping algorithms can be modified

to also compute other polygon set operations, like the union P ∪ Q
and the differences P \ Q and Q \ P . Especially in computer graph-

ics, polygon clipping may also refer more specifically to the process

of fragmenting the subject polygon into those parts that lie inside

the clip polygon and those that lie outside the clip polygon [12] .

However, we follow the more common convention that clipping P
 fi
nd Q yields P ∩ Q and note that the result is symmetric with re-

pect to P and Q .

. Greiner–Hormann algorithm

The Greiner–Hormann polygon clipping algorithm [1] consists

f three phases. The intersection phase computes all intersections

oints between P and Q and inserts them as new vertices into

oth polygons. In Fig. 3 , there are eight such intersection points

 1 , . . . , I 8 , and the algorithm adds, for example, I 1 as a new vertex

f P between P 1 and P 2 and I 1 , I 6 , I 8 , and I 3 in this order as new

ertices of Q between Q 3 and Q 4 . Greiner and Hormann propose

o represent all polygon components with circular doubly-linked

ists to facilitate the vertex insertion operation and to link corre-

ponding pairs of intersection vertices using additional neighbour

ointers that are needed in the third phase (see Fig. 4).

The labelling phase marks each intersection vertex I of P as en-

ry or exit point, depending on whether someone travelling along

in the given order enters or leaves the interior of Q at I , and

imilarly for the intersection vertices of Q . To this end, the algo-

ithm starts for each component P of P at the first vertex P of P ,

etermines whether P lies inside or outside Q [13] , and then tra-

erses all vertices of P in the given order, labelling the intersection

ertices alternately as entry or exit . For the example in Fig. 3 , the

rst vertex P of the first component of P is identified as lying
1

E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07 3

Fig. 4. The Greiner–Hormann algorithm uses doubly-linked lists to represent polygon components. After inserting and labelling the intersection vertices (cf. Fig. 3 b), each

component R of R is traced out by starting at an intersection vertex on P (shaded), moving along P in the correct order, switching over to Q at the next intersection vertex,

and repeating this process until R is closed. The switching step requires linking corresponding intersection vertices of P and Q with neighbour pointers (dashed).

a b c
Fig. 5. The Greiner–Hormann algorithm cannot deal with degenerate intersections like the one at P 3 (a), and while perturbing the vertex helps to overcome this limitation,

different perturbation directions may lead to geometrically and topologically different results (b, c).

i

n

F

o

t

t

s

g

t

b

v

t

r

w

a

v

o

p

w

h

t

s

t

c

R

R

t

a

3

G

i

w

d

v

c

e

m

t

l

e

p

t

t

m

s

4

t

c

s

a

p

d

v

m

T

a

p

4

t

o

p

t

d

g

Q

s

I

a

T

P

m

nside Q , so that the next intersection vertex along this compo-

ent, I 1 , is marked as exit , the second next, I 2 , as entry , and so on.

or the second component of P, its first vertex P 6 is found to lie

utside Q , hence I 5 gets an entry and I 6 an exit label, etc. For Q ,

he algorithm determines that Q 1 lies outside P and then marks I 2 ,

his time as a vertex of Q , as entry , then I 7 as exit , and so forth.

The tracing phase finally generates all components of the re-

ult polygon R . Starting at an intersection vertex I of P, the al-

orithm moves along the corresponding component of P either in

he forward or backward direction, depending on whether the la-

el of I is entry or exit , respectively, until the next intersection

ertex is encountered. Using the neighbour pointer, the algorithm

hen switches to the corresponding intersection vertex of Q and

epeats this process until it returns to I . All vertices visited this

ay and in this order constitute one component of R , and the

lgorithm continues generating components until all intersection

ertices have been visited. For the example in Fig. 3 , the tracing

f the first component starts at I 1 . Since I 1 is marked as an exit

oint, we traverse P backward, encountering first P 1 and then I 4 ,

here we switch over to Q . As a vertex of Q , the label of I 4 is exit ,

ence we proceed backwards to I 5 and switch back to P . Observing

hat I 5 on P is an entry point, we advance forward to I 6 , and after

witching, moving along Q to I 1 , and switching back, we arrive at

he initial vertex I 1 on P . This completes the tracing of the first

omponent R 1 of R with vertices R 1 = I 1 , R 2 = P 1 , R 3 = I 4 , R 4 = I 5 ,

 5 = I 6 (see Figs. 3 c and 4). After generating the second component

 2 = [R 6 , R 7 , R 8 , R 9] = [I 2 , I 3 , I 8 , I 7] in the same way with I 2 on P as

he initial vertex, all intersection vertices have been visited and the

lgorithm terminates.

.1. Degeneracies

Despite its favourable simplicity, a serious limitation of the

reiner–Hormann algorithm is that it cannot deal with degenerate

ntersections, that is, if a vertex of P lies on an edge or coincides

ith a vertex of Q or vice versa. For example, if P 3 in Fig. 5 a is

etected as an intersection and hence inserted as an intersection

ertex into both P and Q , then the result will be incorrect, be-

ause the strategy of labelling intersection vertices alternately as

ntry and exit gives wrong labels in this case. While the problem

ay be fixed by slightly perturbing any such degenerate intersec-
ion vertices, the method of perturbation can result in different so-

utions depending upon the perturbation direction. In the previous

xample, moving P 3 slightly towards the interior of Q gives a result

olygon with five vertices (see Fig. 5 b), and any perturbation in

he opposite direction produces an intersection polygon with two

riangular components (see Fig. 5 c). This renders the perturbation

ethod indeterminate and not appropriate for various applications,

uch as numerical simulation [5] .

. Extension of the Greiner–Hormann algorithm

Inspired by the work of Kim and Kim [3] , we figured out that

he aforementioned limitation of the Greiner–Hormann algorithm

an be overcome with rather small changes that do not affect the

implicity of the algorithm. In fact, our extension mainly requires

 more refined analysis of the intersection vertices in the labelling

hase of the algorithm, provided that degenerate intersections are

etected and handled correctly in the intersection phase. Our re-

ised labelling strategy uses local orientation tests to identify and

ark a subset of all intersection vertices as crossing intersections.

hese are then labelled alternately as entry and exit points exactly

s in the original Greiner–Hormann algorithm, and also the tracing

hase of the algorithm remains basically the same.

.1. Intersection phase

The first phase of our algorithm is essentially the same as in

he Greiner–Hormann algorithm as it finds all intersection points

f P and Q , but we must deal with degenerate intersections ap-

ropriately. To this end, we test the half-open edges of P against

he half-open edges of Q for potential intersections, so as to avoid

etecting a possible intersection at a vertex twice. Without loss of

eneralization, let us consider the half-open edges [P 1 , P 2) and [Q 1 ,

 2) and distinguish two cases.

If both edges are not parallel, then there exists a unique inter-

ection point of the two lines defined by both edges,

 = (1 − α) P 1 + αP 2 = (1 − β) Q 1 + βQ 2 , α, β ∈ R ,

nd the edges themselves intersect at I , if and only if 0 ≤α, β < 1.

he parameters α and β describe the relative position of I between

 1 and P 2 and between Q 1 and Q 2 , respectively. They can be deter-

ined as

4 E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07

a b c d
Fig. 6. Possible intersection types for two non-parallel edges [P 1 , P 2) and [Q 1 , Q 2): X-intersection (a), T-intersection (b, c), and V-intersection (d). Note that P 2 and Q 2 are

depicted by empty circles to emphasize that we are considering half-open edges.

a b c
Fig. 7. Possible overlap types for two collinear edges [P 1 , P 2) and [Q 1 , Q 2): X-overlap (a), T-overlap (b, c), and V-overlap (d).

t

t

t

s

P

s

4

p

t

n

p

e

i

l

e

I

w

p

s

a

e

α =

A(P 1 , Q 1 , Q 2)

A(P 1 , Q 1 , Q 2) − A(P 2 , Q 1 , Q 2)
,

β =

A(Q 1 , P 1 , P 2)

A(Q 1 , P 1 , P 2) − A(Q 2 , P 1 , P 2)
, (1)

where

A(P, Q, R) = (Q x − P x)(R y − P y) − (Q y − P y)(R x − P x) ,

is the function that computes twice the signed area of the triangle

[P , Q , R]. Note that the denominators in (1) do not vanish as long

as [P 1 , P 2) and [Q 1 , Q 2) are not parallel. We classify the possible

intersection types as shown in Fig. 6 :

• X-intersection : this non-degenerate intersection occurs if and

only if 0 < α, β < 1. In this case, we add I to P and Q and link

the two copies with the neighbour pointer as described in [1] .
• T-intersection : if α = 0 and 0 < β < 1, then P 1 lies on the edge

[Q 1 , Q 2], but does not coincide with Q 1 or Q 2 . In this case, we

add a copy of P 1 to Q and link it with P 1 . Likewise, a copy of

Q 1 is added to P and linked with Q 1 , if β = 0 and 0 < α < 1.
• V-intersection : if α = β = 0 , then both edges intersect at P 1 =

Q 1 , and we link P 1 with Q 1 .

We do not consider degenerate intersection cases involving P 2 ,

because they will be detected as soon as we move on to the next

edge [P 2 , P 3) of P, and the same holds for degenerate cases involv-

ing Q 2 .

If both edges are parallel, then they can intersect or rather over-

lap only if they are collinear, that is, if

A(P 1 , Q 1 , Q 2) = A(P 2 , Q 1 , Q 2) = A(Q 1 , P 1 , P 2) = A(Q 2 , P 1 , P 2) = 0 .

Under this assumption, we can express Q 1 relative to [P 1 , P 2) and

P 1 relative to [Q 1 , Q 2) as

Q 1 = (1 − α) P 1 + αP 2 , P 1 = (1 − β) Q 1 + βQ 2 ,

and the parameters α and β can be determined as

α =

〈 Q 1 − P 1 , P 2 − P 1 〉
〈 P 2 − P 1 , P 2 − P 1 〉 , β =

〈 P 1 − Q 1 , Q 2 − Q 1 〉
〈 Q 2 − Q 1 , Q 2 − Q 1 〉 ,

where 〈 · , · 〉 denotes the standard dot product in R

2 . We clas-

sify the possible overlap types in analogy to the intersection types

above and as shown in Fig. 7 :

• X-overlap : this type of overlap occurs if and only if 0 < α, β < 1.

In this case, we add a copy of P 1 to Q , linked with P 1 , and a

copy of Q to P, linked with Q .
1 1
• T-overlap : if α < 0 or α ≥ 1, and 0 < β < 1, then we add a copy

of P 1 to Q , linked with P 1 . Likewise, a copy of Q 1 , linked with

Q 1 , is added to P, if β < 0 or β ≥ 1, and 0 < α < 1.
• V-overlap : if α = β = 0 , then P 1 = Q 1 , and we link P 1 with Q 1 .

Again, we do not consider overlap cases involving P 2 or Q 2 , for

he same reasons as above.

After executing the first phase of our algorithm, it is guaranteed

hat all intersections of P and Q occur at common intersection ver-

ices, which are linked by neighbour pointers, or along common

egments, which are now represented as common edges in both

and Q with common intersection vertices as endpoints. Fig. 8

hows an example.

.2. Labelling phase

As in the Greiner–Hormann algorithm, the goal of the second

hase is to mark the previously found intersection vertices as en-

ry or exit points. If all intersections of P and Q are assumed to be

on-degenerate X-intersections , then marking these vertices is sim-

le, because an entry intersection vertex is always followed by an

xit intersection vertex and vice versa (see Section 3). Degenerate

ntersections, however, require a more careful investigation of the

ocal situation around each intersection vertex.

To this end, let us first recall that a point Q lies to the left of the

dge [P 1 , P 2] if A(Q , P 1 , P 2) > 0 and to the right if A(Q , P 1 , P 2) < 0.

f we now consider two adjacent edges [P 1 , P 2] and [P 2 , P 3], then

e can determine whether Q lies to the left or to the right of the

olygonal chain (P 1 , P 2 , P 3) by computing

 1 = A(Q, P 1 , P 2) , s 2 = A(Q, P 2 , P 3) , s 3 = A(P 1 , P 2 , P 3)

nd distinguishing three cases as shown in Fig. 9 :

• Left turn : if s 3 > 0, then the chain takes a left turn at P 2 and

Q lies to the left of (P 1 , P 2 , P 3) if s 1 > 0 and s 2 > 0, and to the

right if s 1 < 0 or s 2 < 0.
• Straight : if s 3 = 0 , then sign (s 1) = sign(s 2) and Q lies to the left

of (P 1 , P 2 , P 3) if s 1 > 0 and to the right if s 1 < 0.
• Right turn : if s 3 < 0, then the chain takes a right turn at P 2

and Q lies to the left of (P 1 , P 2 , P 3) if s 1 > 0 or s 2 > 0, and to the

right if s 1 < 0 and s 2 < 0.

Clearly, the case of a straight polygonal chain can be included in

ither of the other two cases, for the sake of simplifying the code.

E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07 5

a b
Fig. 8. Example of two polygons before (a) and after (b) executing the intersection phase. Note that we renumber the vertices of both polygons in (b) to simplify the

notation. The algorithm detects nine common intersection vertices () and the two common segments of P and Q are now represented as edges [P 2 , P 3] = [Q 5 , Q 6] and

[P 8 , P 9] = [Q 12 , Q 13] .

a b c
Fig. 9. Regions to the left (light grey) and to the right (dark grey) of the polygonal chain (P 1 , P 2 , P 3) for the three possible cases: left turn (a), straight (b), and right turn (c).

a b c
Fig. 10. Possible local configurations without overlaps around an intersection vertex I after the first phase: crossing (a) and bouncing (b, c).

s

v

p

b

F

P

a

i

a

s

v

t

m

s

c

m

E

l

m

v

t
Now let I be an intersection vertex of P, preceded by P − and

ucceeded by P + . As a consequence of the first phase, I is also a

ertex of Q with neighbours Q − and Q + . We then distinguish two

ossible cases.

If the four edges adjacent to I do not overlap, then the local

ehaviour of P with respect to Q at I can be classified as shown in

ig. 10 :

• Crossing : if Q − and Q + lie on different sides of (P −, I, P +) , then

P crosses Q at I , and we mark I as crossing .
• Bouncing : if Q − and Q + lie on the same side of (P −, I, P +) , then

P does not cross Q at I , and we mark I as bouncing .

For the example in Fig. 8 b, this classification scheme marks P 7 ,

 13 , P 14 as crossing and P 5 , P 11 as bouncing (see Fig. 12 a).

The situation is slightly more complicated, if I is the endpoint of

 common segment. If the edge [I, P +] of P overlaps with Q , then

t is either equal to [Q −, I] or [I, Q +] , because all common segments

re represented as common edges after phase one. Therefore, this

ituation can be detected by checking if P + is itself an intersection

ertex and linked to either Q − or Q + , and a similar test reveals if

he edge [P −, I] of P overlaps with Q . With these considerations in

ind, we can distinguish the five cases shown in Fig. 11 for de-

cribing the local position of P around I relative to Q :

• Left/On : if P + is linked to Q + (or Q −) and Q − (or Q +) lies to

the right of (P −, I, P +) , then P changes from being left of Q to

being on Q at I .
• Right/On : if P + is linked to Q + (or Q −) and Q − (or Q +) lies to

the left of (P −, I, P +) , then P changes from being right of Q to

being on Q at I .
• On/On : if P + is linked to Q + (or Q −) and P − is linked to Q − (or

Q +), then P is on Q to both sides of I .
• On/Left : if P − is linked to Q − (or Q +) and Q + (or Q −) lies to the

right of (P −, I, P +) , then P changes from being on Q to being

left of Q at I .
• On/Right : if P − is linked to Q − (or Q +) and Q + (or Q −) lies to

the left of (P −, I, P +) , then P changes from being on Q to being

right of Q at I .

After this analysis, all intersection vertices of P with adja-

ent overlapping edges form polygonal intersection chains I =
(I 1 , I 2 , . . . , I k) with k > 1, where I 1 is marked as x/on , I 2 , . . . , I k −1 are

arked as on/on , and I k is marked as on/y with x , y ∈ { left , right }.

ach polygonal intersection chain I can then be classified as fol-

ows:

• Delayed crossing : if x
 = y , then P crosses Q at I . In this case,

we mark the intersection vertices I 1 , . . . , I k −1 as bouncing and

I k as crossing .
• Delayed bouncing : if x = y, then P does not cross Q at I , and

we mark all intersection vertices I 1 , . . . , I k as bouncing .

Note that in the case of a delayed crossing we could actually

ark any intersection vertex in I as crossing , as long as all other

ertices in I are marked as bouncing . For the example in Fig. 8 ,

he strategy above identifies a delayed crossing at (P , P) and a de-
8 9

6 E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07

a b c d e
Fig. 11. Possible local configurations with overlaps around an intersection vertex I of P with respect to Q after phase one: left/on (a) right/on (b), on/on (c), on/left (d), on/right

(e).

a b
Fig. 12. Example from Fig. 8 after the second phase (a). The algorithm marks the intersection vertices as crossing () or bouncing () and labels the crossing vertices as

entry () and exit () points for both polygons. The third phase of the algorithm finally creates the intersection polygon (b).

a b c d
Fig. 13. Examples of some special cases. If a polygon component consists of intersection vertices only after phase one (a), then we add the midpoint of the first non-

overlapping edge to the polygon, because the entry / exit -classification in phase two requires an initial non-intersection vertex. For the two polygons in (a), the result has one

non-simple component R = [R 1 , . . . , R 9] (b). If some polygon component does not contain any crossing vertices after the labelling phase, then it either does not intersect

the other polygon (c), or it contains or is contained in a component of the other polygon (d), and then the interior component is added to R .

P

n

4

p

H

f

a

u

t

a

a

s

i

F

P

s

s

L

t

s

R

Q
layed bouncing at (P 2 , P 3), and consequently marks P 9 as crossing

and P 2 , P 3 , P 8 as bouncing (see Fig. 12 a).

Once the intersection vertices of P have been marked as cross-

ing or bouncing , we can simply copy these labels to the intersec-

tion vertices of Q , because Q crosses P at an intersection vertex I

if and only if P crosses Q at I .

The labelling of crossing vertices is finally done as described

in Section 3 by tracing all components of both polygons P and Q
once and marking entry and exit points with respect to the other

polygon’s interior. For the example in Fig. 8 , this algorithms marks

the vertices P 7 , P 13 , Q 2 , Q 9 as entry points and the vertices P 9 , P 14 ,

Q 7 , Q 12 as exit points (see Fig. 12 a).

Note that the final labelling stage requires at least one vertex

of each polygon component to be non-intersecting, so that the in-

side/outside test can be executed unambiguously, which may not

be the case in some special situations like the one in Fig. 13 a. To

explain how to overcome this problem, let us assume that some

component P of P consists entirely of intersection vertices after

executing the first phase of our algorithm and distinguish two

cases. If all edges of P represent common segments, then P and

some component Q of Q enclose the same region and we can sim-

ply add P = Q as a component of the intersection polygon R , if

and only if either both components are holes or if both are not

holes. Otherwise, at least one of the intersection vertices of P is

not an on/on vertex and thus adjacent to an edge, say [P i , P i +1] ,

that does not overlap with Q . Hence, we can add the midpoint
 = (P i + P i +1) / 2 as temporary vertex to P and use it as the initial

on-intersection vertex for the entry / exit -classification.

.3. Tracing phase

The third phase of the algorithm for creating the intersection

olygon R remains largely unchanged from the original Greiner–

ormann algorithm and is described in Section 3 . The only dif-

erence is that the generation of each result component starts at

 crossing intersection vertex I of P and that we traverse P as

sual, forward if I is an entry point and backward otherwise, but

his time until we reach a vertex of P with opposite entry / exit flag,

nd likewise after switching over to Q . In the absence of degener-

te intersections, this is equivalent to proceeding to the next inter-

ection vertex, but in general we may pass one or more bouncing

ntersection vertices before switching polygons. For the example in

ig. 12 b, we thus start at P 7 , traverse P forward until we get to

 9 = Q 12 , then backward along Q up to Q 9 = P 13 , and so on.

If some component P of P does not contain any crossing inter-

ection vertex, then we have encountered one of the special cases

hown in Fig. 13 c and 13 d, which can be dealt with as follows.

et P be a non-intersection vertex of P or the midpoint of an edge

hat does not overlap with Q . If and only if P lies inside Q , then

o does the entire component P and we add it as a component of

 in this case. The same strategy is applied to all components of

 that do not contain any crossing intersection vertex, and by ex-

E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07 7

a b c d
Fig. 14. Example of two polygons (a), for which the algorithm without vertex splitting generates a degenerate result with one component R 1 = [R 1 , . . . , R 7] that contains a

duplicate vertex R 2 = R 6 (b). After splitting the vertex pair (P, Q) = (P 3 , Q 2) , setting the entry / exit flags, and linking the new vertices P ′ and Q ′ (c), the third phase of the

algorithm generates the correct result with two simple components R 1 = [R 1 , R 2 , R 3] and R 2 = [R 4 , R 5 , R 6 , R 7] (d).

a

c

4

q

g

g

i

v

b

a

R

b

i

p

i

s

t

a

l

t

F

i

t

e

a

Q

f

a

t

t

t

d

s

a

Q

[

b

W

a

n

o

v

t

d

I

Q

l

v

t

fi

e

i

c

s

t

t

a

a

d

b

e

o

i

l

r

g

P

v

f

w

b

g

p

S

a

5

s

a

c

mining all possible cases, it is clear that this procedure gives the

orrect result, even in the case of nested holes.

.4. Improvements and generalizations

In contrast to the Greiner–Hormann algorithm and as a conse-

uence of the way we handle degenerate intersections, the result

enerated by the algorithm above may contain three kinds of de-

eneracies, which are not incorrect per se, but should be resolved

n order to make the result as simple as possible.

First, there can be chains of three or more successive, collinear

ertices, and all but the first and last vertices of such a chain can

e omitted without modifying the correctness of the result. An ex-

mple is the intersection polygon in Fig. 12 b, where the vertices

 3 , R 9 , and R 11 should be removed. In general, the vertex R should

e removed, if and only if A(R −, R, R +) = 0 , and this can be done

n a post-processing step that visits each vertex of the result once.

Second, it may happen that a vertex appears twice in the result

olygon, as shown in Fig. 14 b. The polygon should then be split

nto two parts at such vertex, so as to make all components of R
imple. Notice that this situation can only occur at a bouncing in-

ersection vertex for which the adjacent edges of P lie inside Q
nd vice versa. In order to detect these cases, we extend the final

abelling stage of the second phase to mark all bouncing vertices

hat lie between an entry and an exit point as split candidates .

or the example in Fig. 14 a, the split candidates are the bounc-

ng vertices P 3 , P 4 , Q 2 , and Q 3 , but not P 6 , P 9 , Q 5 , and Q 8 . After

he labelling, we loop through the split candidates of P and if we

ncounter a candidate P , whose neighbour Q has been marked as

 split candidate for Q , we prepare the split of this vertex pair (P ,

). To this end, we insert a copy P ′ of P after P into P and likewise

or Q , as shown in Fig. 14 c. We then label P and Q as exit and P ′
nd Q

′ as entry points and mark all four vertices as crossing , so

hat they can serve as initial vertices for generating the intersec-

ion polygons in the third phase. Finally, we need to link them in

he correct way. If the local orientation of P at P and Q at Q is

ifferent, that is,

ign (A(P −, P, P +))
 = sign (A(Q −, Q, Q +)) ,

s in the example in Fig. 14 c, then we keep the link between P and

 and link P ′ with Q

′ . Otherwise, we link P with Q

′ and Q with P ′ .
Third, the result may contain “glued” edges, like [R 3 , R 4] and

 R 8 , R 9] in Fig. 13 b or [R 1 , R 2] and [R 6 , R 1] in Fig. 16 b, which

ound an area with no interior and should therefore be removed.

hile this can also be done in a post-processing step, it is prefer-

ble to avoid them upfront. Indeed, we achieve this by two mi-
or modifications of the labelling strategy in the second phase of

ur algorithm, which are inspired and adapted from the obser-

ations in [14] . On the one hand, when classifying the intersec-

ion chain I = (I 1 , I 2 , . . . , I k) , we mark I 1 and I k as endpoints of a

elayed crossing or delayed bouncing and the intersection vertices

 2 , . . . , I k −1 as bouncing . On the other hand, when tracing P and

 for setting the entry / exit flags, we mark the endpoints of a de-

ayed bouncing in the same way as regular crossing intersection

ertices, while the endpoints of a delayed crossing are marked ei-

her both as entry or both as exit points. In addition, we mark the

rst vertex of an exiting delayed crossing and the last vertex of an

ntering delayed crossing as crossing . In case of a delayed bounc-

ng , we mark both endpoints as crossing , if and only if the adja-

ent edges of P lie inside Q and vice versa. Similar to the vertex

plitting above, this requires identifying crossing candidates during

he traversal and marking matching candidates afterwards. Since

he traversal starts at a non-intersection vertex and thus never at

n interior vertex of an intersection chain, the two endpoints of

n intersection chain are always visited in pairs and it is easy to

istinguish the first endpoint from the last.

As the examples in Figs. 15 and 16 c show, this improved la-

elling strategy is able to remove glued edges effectively, and an

xhaustive examination of all possible combinations of clockwise-

r counterclockwise oriented components of P and Q , of enter-

ng or exiting delayed crossings , as well as interior or exterior de-

ayed bouncings , reveals that this strategy handles all cases cor-

ectly; see [14] for details.

We finally note that, just like the original Greiner–Hormann al-

orithm [1] , our extended version can also compute the union of

and Q after some minor modifications. The key change is to re-

erse the traversal directions during the tracing phase and to travel

orward from exit to entry points along the polygons and back-

ard from entry to exit points. Moreover, entire components must

e added to R if they lie outside instead of inside the other poly-

on, and the rules for splitting vertices and the labelling of end-

oints of delayed crossing and delayed bouncings must be reversed.

imilar changes can be made for determining the differences P \ Q
nd Q \ P .

. Examples

We implemented the algorithm in C++ and tested it exten-

ively for various input polygons. The code and all examples are

vailable on the second author’s webpage at https://www.inf.usi.

h/hormann/polyclip/ .

https://www.inf.usi.ch/hormann/polyclip/

8 E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07

a b c
Fig. 15. For the example from Fig. 13 a, the improved labelling strategy sets the entry / exit flags not only for crossing vertices, but for all endpoints of intersection chains,

both for P (a) and for Q (b), so that the third phase of the algorithm generates a result polygon with two components R 1 = [R 1 , R 2 , R 3] and R 2 = [R 4 , R 5 , R 6] (c).

a b c
Fig. 16. Example of two polygons (a), for which the algorithm generates a degenerate result with glued edges [R 1 , R 2] and [R 6 , R 1] (b). Both get removed with the improved

labelling strategy (c).

a b c
Fig. 17. The intersection of a closed fifth-order Hilbert curve (a) with a rotated copy of itself (b), aligned at the top right, gives 116 simple polygons (c).

a b c
Fig. 18. The algorithm also handles complex input polygons with multiple and nested components (a,b) and computes the intersection correctly (c).

p

t

t

t

d

t

n

t

d

a

n

i

r
The first example in Fig. 17 is a real stress test for degenerate

intersections, as both input polygons, with 820 vertices each, in-

terpolate all nodes of a regular 32 × 32 grid. The first phase of the

algorithm finds 14 non-degenerate and 1010 degenerate intersec-

tions (176 T- and 432 V-intersections, as well as 208 T- and 194

V-overlaps) and adds 206 vertices to both polygons. The second

phase detects 42 bouncing intersection vertices and 396 delayed

crossings, and splits 21 bouncing vertex pairs. The third phase cre-

ates 116 simple polygons with 804 vertices, and 164 of these are

removed by the post-processing step that eliminates collinear ver-

tices.

The second example in Fig. 18 illustrates that the algorithm also

handles complex input polygons with multiple and nested compo-

nents, with the interior defined by the even-odd rule [2] . There are

46 non-degenerate and 21 degenerate intersections in this exam-
le, with the latter corresponding to 4 bouncing intersection ver-

ices, 2 delayed crossings, and 5 delayed bounces. No bouncing ver-

ex pairs need to be split, and after removing 3 collinear vertices,

he result consists of 14 simple polygons with 64 vertices.

The last two examples testify to the need of being able to han-

le degenerate cases in real-world applications. In Fig. 19 we show

he polygons representing the boundaries of a canton (5 compo-

ents, 1322 vertices) and a nature park (1 component, 2602 ver-

ices) in Switzerland. The close-ups zoom to the crossing and the

elayed crossing (right) found by the algorithm. Comparing the

rea of the intersection result (1240 vertices) with the area of the

ature park reveals that 46.6% of the park belong to this canton.

In the final example in Fig. 20 , we consider polygons represent-

ng US school districts in the Albuquerque region, ranked by school

ating. We first compute the union of the polygons for the 5 best-

E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07 9

Fig. 19. Intersection (shaded) of the boundary of the Regional Nature Park Gruyère Pays-d’Enhaut (dashed lines and dotted vertices) with the boundary of the Canton of

Fribourg (solid lines and circled vertices), with close-ups to the regions where both boundaries intersect. (Data used in this example is from www.openstreetmap.org , made

available under the Open Database License (ODbL).)

a b c d
Fig. 20. To find the common region of five elementary school districts (a), three middle school districts (b), and two high-school districts (c), we first compute their respective

unions and finally their intersection (d).

r

f

3

r

t

T

t

s

6

n

c

o

h

a

o

p

b

a

G

v

t

b

w

d

d

c

p

(

o

o

i

t

i

g

r

a

n

o
anked elementary schools (which requires to run the algorithm

our times, adding one polygon at each run) and likewise for the

 best-ranked middle schools and the 2 best-ranked high schools,

esulting in the polygons E, M , and H. We then compute the in-

ersection of E with M and further intersect the result with H.

his finally gives the shaded polygon in Fig. 20 d, which represents

he neighbourhood with access to top schools on all three levels of

chooling.

. Discussion and conclusions

Clipping planar polygons is central to several fields, and the

eed for a general algorithm capable of clipping convex and con-

ave polygons with multiple components and holes was pointed

ut by Weiler and Atherton [8] . Their algorithm was the first to

ave this feature, and is akin to our work in that it consists of

n intersection and a tracing phase that are basically the same as

urs. The Weiler–Atherton algorithm gets by without a labelling

hase, since it assumes the vertices of all polygon components to

e ordered consistently, namely clockwise for exterior boundaries

nd counter-clockwise for holes. By adding the labelling phase,
reiner and Hormann [1] manage to avoid this restriction on the

ertex order and to generalize the Weiler–Atherton algorithm so

hat it also handles self-intersecting polygons correctly. However,

oth algorithms cannot deal with degenerate intersection cases,

hich is a severe limitation in many applications.

Weiler’s polygon comparison algorithm [12] overcomes this

rawback, albeit at the expense of using a more complicated graph

ata structure. Instead, we show that degenerate intersection cases

an also be dealt with effectively by carefully refining the labelling

hase of the Greiner–Hormann algorithm. Our new labelling phase

 Sections 4.2 and 4.4) is efficient, since it relies on strictly local

perations and on detecting and distinguishing a small number

f cases. In fact, the running time of this phase is O (k), where k

s the number of intersections between P and Q , and according

o our experience it takes only about twice as long as the orig-

nal labelling phase of the Greiner–Hormann algorithm. The only

lobal information needed for labelling all entry / exit flags cor-

ectly at the end of this phase is the inside/outside test that is

pplied to one non-intersection vertex for each polygon compo-

ent and typically requires O (n) operations, where n is the number

f vertices of the other polygon. Note that the algorithm of Kim

http://www.openstreetmap.org

10 E.L. Foster, K. Hormann and R.T. Popa / Computers & Graphics: X 2 (2019) 10 0 0 07

a b c d
Fig. 21. Our algorithms handles self-intersecting polygons correctly, as long as the self-intersection does not lie on the other polygon (a), but may fail otherwise (b, c, d).

o

p

D

c

i

S

f

R

[

and Kim [3] , which also extends the Greiner–Hormann algorithm

to handle degenerate intersections, requires carrying out two in-

side/outside tests for each intersection vertex or intersection chain,

resulting in an inferior O (kn) time complexity.

Overall, our algorithm is only marginally slower than the origi-

nal Greiner–Hormann algorithm, because the running time is dom-

inated by the intersection phase, which usually takes more than

80% of the time, so that the small overhead induced by the new

labelling phase is negligible. As proposed by Greiner and Hor-

mann [1] , we adopt the brute force approach for the intersection

phase and find the k intersections of P and Q by simply testing all

n edges of P against all m edges of Q , which obviously requires

O (nm) operations, and is the best one can do in the worst case,

when k ∈ O (nm). However, if the number of intersections is small,

then it is more efficient to compute them with a plane sweep ap-

proach in O ((n + m + k) log (n + m)) time [15] . The latter is done

by Vatti’s algorithm [9] , the algorithm of Martínez et al. [16] , and

its successor [17] , which are also able to deal with degenerate in-

tersections and are reportedly faster than the Greiner–Hormann al-

gorithm if k ∈ O (n + m) [16,17] .

Our experiments confirmed these timings, and also those in [1] ,

which show that both the Greiner–Hormann and our algorithm

outperform the plane-sweep-based approaches for completely ran-

dom polygons with many self-intersections, simply because the

latter do not have to be computed. Moreover, our algorithm is

the fastest in case of moderately sized polygons (mn ≤ 1 0 0 0 0 0 0,

k ≤ 10 0 0 0), most probably because of the extremely efficient la-

belling and tracing phases, which both take less than 1 ms in this

case. It is very likely that the algorithm can further be sped up by

employing the plane sweep approach in the intersection phase, but

it remains future work to verify this conjecture. Further improve-

ment, also in terms of memory efficiency, is probably possible by

adapting the idea of Liu et al. [4] , who suggest to maintain a single

doubly-linked list of intersections, instead of inserting them into P
and Q .

The only limitation of our algorithm are degenerate intersec-

tions involving self-intersection points. In fact, if a self-intersection

of one polygon lies on an edge or coincides with a vertex of the

other polygon, then the algorithm may fail (see Fig. 21). However,

this problem can be avoided by resolving self-intersections in a

preprocessing step, for example by splitting P in Fig. 21 into two

triangles.

It remains future work to find a more elegant solution to the

aforementioned limitation and to extend the ideas presented in

this paper to the 3D setting, so that they can be used for Boolean
perations in solid modeling, model repair, and other geometry

rocessing applications [11] .

eclaration of competing interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cagx.2019.10 0 0 07

eferences

[1] Greiner G , Hormann K . Efficient clipping of arbitrary polygons. ACM Trans
Graph 1998;17(2):71–83 .

[2] Foley JD , van Dam A , Feiner SK , Hughes JF . Computer Graphics: Principles and
Practice. Addison-Wesley Systems Programming Series. 2nd. Reading: Addis-

on-Wesley; 1990 .
[3] Kim DH , Kim M-J . An extension of polygon clipping to resolve degenerate

cases. Comput-Aided Des Appl 2006;3(1–4):447–56 .

[4] Liu YK , Wang XQ , Bao SZ , Gomboši M , Žalik B . An algorithm for polygon clip-
ping, and for determining polygon intersections and unions. Comput Geosci

2007;33(5):589–98 .
[5] Farrell PE , Piggott MD , Pain CC , Gorman GJ , Wilson CR . Conservative interpola-

tion between unstructured meshes via supermesh construction. Comput Meth
Appl Mech Eng 2009;198(33–36):2632–42 .

[6] Simonson LJ . Industrial strength polygon clipping: a novel algorithm with ap-

plications in VLSI CAD. Comput-Aided Des 2010;42(12):1189–96 .
[7] Schettino A . Polygon intersections in spherical topology: Applications to plate

tectonics. Comput Geosci 1999;25(1):61–9 .
[8] Weiler K , Atherton P . Hidden surface removal using polygon area sorting. SIG-

GRAPH Comput Graph 1977;11(2):214–22 .
[9] Vatti BR . A generic solution to polygon clipping. Commun ACM

1992;35(7):56–63 .
[10] Agoston MK . Clipping. In: Computer graphics and geometric modeling: imple-

mentation and algorithms. London: Springer; 2005. p. 69–110 . 3

[11] Wang CCL , Manocha D . Efficient boundary extraction of BSP solids based on
clipping operations. IEEE Trans Vis Comput Graph 2013;19(1):16–29 .

12] Weiler K . Polygon comparison using a graph representation. SIGGRAPH Comput
Graph 1980;14(3):10–18 .

[13] Hormann K , Agathos A . The point in polygon problem for arbitrary polygons.
Comput Geom 2001;20(3):131–44 .

[14] Popa RT, Mladin E-C, Petrescu E, Prisecaru T. A simple en,ex marking rule for

degenerate intersection points in 2D polygon clipping; 2017. arXiv: 1709.00184 .
[15] de Berg M , Cheong O , van Kreveld M , Overmars M . Computational geometry:

algorithms and applications. 3rd. Berlin: Springer; 2008. p. 19–43 . 2
[16] Martínez F , Rueda AJ , Feito FR . A new algorithm for computing Boolean oper-

ations on polygons. Comput Geosci 2009;35(6):1177–85 .
[17] Martínez F , Ogayar C , Jiménez JR , Rueda AJ . A simple algorithm for Boolean

operations on polygons. Adv Eng Softw 2013;64:11–19 .

https://doi.org/10.1016/j.cagx.2019.100007
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0001
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0001
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0001
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0002
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0003
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0003
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0003
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0004
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0005
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0006
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0006
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0007
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0007
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0008
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0008
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0008
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0009
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0009
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0010
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0010
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0010
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0011
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0011
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0011
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0012
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0012
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0013
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0013
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0013
http://arxiv.org/abs/1709.00184
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0015
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0016
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0016
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0016
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0016
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0017
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0017
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0017
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0017
http://refhub.elsevier.com/S2590-1486(19)30007-X/sbref0017

	Clipping simple polygons with degenerate intersections
	\numberline {1}Introduction
	\numberline {2}Polygon clipping
	\numberline {3}Greiner–Hormann algorithm
	\numberline {3.1}Degeneracies

	\numberline {4}Extension of the Greiner–Hormann algorithm
	\numberline {4.1}Intersection phase
	\numberline {4.2}Labelling phase
	\numberline {4.3}Tracing phase
	\numberline {4.4}Improvements and generalizations

	\numberline {5}Examples
	\numberline {6}Discussion and conclusions
	Declaration of competing interest
	Supplementary material
	References

