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Abstract
The GAP package Congruence provides functionality to work with congruence subgroups of SL2(Z).
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Chapter 1

Introduction

1.1 General aims of Congruence package

The GAP package Congruence provides functions to construct several types of canonical congruence
subgroups in SL2(Z), and also intersections of a finite number of such subgroups.

Furthermore, it implements the algorithm for generating Farey symbols for congruence subgroups
and using them to produce a system of independent generators for these subgroups.

Using the package, one can also determine indices of congruence subgroups and their intersections
in SL2(Z) and in other congruence subgroups, generate their random elements and check element
memberships. Success of other group theoretical constructions mostly depends on whether they could
be expressed in terms of group generators or not.

For the theoretical backround, we refer to [LLT95b], [LLT95a], [CLLT93] and [Kul91].

1.2 Installation and system requirements

Congruence is distributed in standard formats (tar.gz, tar.bz2, -win.zip) and can be obtained
from https://gap-packages.github.io/congruence/.

Congruence does not use external binaries and, therefore, works without restrictions on the op-
erating system. It requires at least version GAP 4.5, and no compatibility with previous releases of
GAP 4 is guaranteed.

Installation of the package is standard and follows the guidelines from the GAP manual (see
(Reference: Installing a GAP Package). After the package is installed, you can start GAP and load
the Congruence package using the command:

Example

gap> LoadPackage("congruence");

4
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Construction of congruence subgroups

The package Congruence provides functions to construct several types of canonical congruence
subgroups in SL2(Z), and also intersections of a finite number of such subgroups. They will re-
turn a matrix group in the category IsCongruenceSubgroup, which is defined as a subcategory of
IsMatrixGroup, and which will have a distinguishing property determining whether it is a congru-
ence subgroup of one of the canonical types, or an intersection of such congruence subgroups (if it
can not be reduced to one of the canonical congruence subgroups). To start to work with the package,
you need first to load it as follows:

Example

gap> LoadPackage("congruence");
-----------------------------------------------------------------------------
Loading Congruence 1.2.4 (Congruence subgroups of SL(2,Integers))
by Ann Dooms (http://homepages.vub.ac.be/~andooms),

Eric Jespers (http://homepages.vub.ac.be/~efjesper),
Olexandr Konovalov (https://alex-konovalov.github.io/), and
Helena Verrill (http://www.math.lsu.edu/~verrill).

maintained by:
Ann Dooms (http://homepages.vub.ac.be/~andooms),
Olexandr Konovalov (https://alex-konovalov.github.io/), and
Helena Verrill (http://www.math.lsu.edu/~verrill).

Homepage: https://gap-packages.github.io/congruence
Report issues at https://github.com/gap-packages/congruence/issues
-----------------------------------------------------------------------------
true

2.1 Construction of congruence subgroups

2.1.1 PrincipalCongruenceSubgroup

. PrincipalCongruenceSubgroup(N) (operation)

Returns the principal congruence subgroup Γ(N) of level N in SL2(Z).
This subgroup consists of all matrices of the form

5
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(
1+Na Nb

Nc 1+Nd

)
where a,b,c,d are integers. The returned group will have the property

IsPrincipalCongruenceSubgroup (2.2.1).
Example

gap> G_8:=PrincipalCongruenceSubgroup(8);
<principal congruence subgroup of level 8 in SL_2(Z)>
gap> IsGroup(G_8);
true
gap> IsMatrixGroup(G_8);
true
gap> DimensionOfMatrixGroup(G_8);
2
gap> MultiplicativeNeutralElement(G_8);
[ [ 1, 0 ], [ 0, 1 ] ]
gap> One(G);
[ [ 1, 0 ], [ 0, 1 ] ]
gap> [[1,2],[3,4]] in G_8;
false
gap> [[1,8],[8,65]] in G_8;
true
gap> SL_2:=SL(2,Integers);
SL(2,Integers)
gap> IsSubgroup(SL_2,G_8);
true

2.1.2 CongruenceSubgroupGamma0

. CongruenceSubgroupGamma0(N) (operation)

Returns the congruence subgroup Γ0(N) of level N in SL2(Z).
This subgroup consists of all matrices of the form(

a b
Nc d

)
where a,b,c,d are integers. The returned group will have the property

IsCongruenceSubgroupGamma0 (2.2.2).
Example

gap> G0_4:=CongruenceSubgroupGamma0(4);
<congruence subgroup CongruenceSubgroupGamma_0(4) in SL_2(Z)>
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2.1.3 CongruenceSubgroupGammaUpper0

. CongruenceSubgroupGammaUpper0(N) (operation)

Returns the congruence subgroup Γ0(N) of level N in SL2(Z).
This subgroup consists of all matrices of the form(

a Nb
c d

)
where a,b,c,d are integers. The returned group will have the property

IsCongruenceSubgroupGammaUpper0 (2.2.3).
Example

gap> GU0_2:=CongruenceSubgroupGammaUpper0(2);
<congruence subgroup CongruenceSubgroupGamma^0(2) in SL_2(Z)>

2.1.4 CongruenceSubgroupGamma1

. CongruenceSubgroupGamma1(N) (operation)

Returns the congruence subgroup Γ1(N) of level N in SL2(Z).
This subgroup consists of all matrices of the form(

1+Na b
Nc 1+Nd

)
where a,b,c,d are integers. The returned group will have the property

IsCongruenceSubgroupGamma1 (2.2.4).
Example

gap> G1_6:=CongruenceSubgroupGamma1(6);
<congruence subgroup CongruenceSubgroupGamma_1(6) in SL_2(Z)>

2.1.5 CongruenceSubgroupGammaUpper1

. CongruenceSubgroupGammaUpper1(N) (operation)

Returns the congruence subgroup Γ1(N) of level N in SL2(Z).
This subgroup consists of all matrices of the form(

1+Na Nb
c 1+Nd

)
where a,b,c,d are integers. The returned group will have the property

IsCongruenceSubgroupGammaUpper1 (2.2.5).
Example

gap> GU1_4:=CongruenceSubgroupGammaUpper1(4);
<congruence subgroup CongruenceSubgroupGamma^1(4) in SL_2(Z)>
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2.1.6 IntersectionOfCongruenceSubgroups

. IntersectionOfCongruenceSubgroups(G1, G2, ..., GN) (function)

. Intersection(G1, G2, ..., GN) (function)

Returns the intersection of its arguments, which can be congruence subgroups or their in-
tersections, constructed with the same function. It is not necessary for the user to use
IntersectionOfCongruenceSubgroups, since it will be called automatically from Intersection.

The returned group will have the property IsIntersectionOfCongruenceSubgroups (2.2.6).
The list of congruence subgroups that form the intersection can be obtained using

DefiningCongruenceSubgroups (2.3.3). Note, that when the intersection appears to be one of the
canonical congruence subgroups, the package will recognize this and will return a canonical subgroup
of the appropriate type.

Example

gap> I:=IntersectionOfCongruenceSubgroups(G0_4,GU1_4);
<principal congruence subgroup of level 4 in SL_2(Z)>
gap> J:=IntersectionOfCongruenceSubgroups(G0_4,G1_6);
<intersection of congruence subgroups of resulting level 12 in SL_2(Z)>

2.2 Properties of congruence subgroups

A congruence subgroup constructed by one of the five above listed functions will have certain prop-
erties determining its type. These properties will be used for method selection by Congruence algo-
rithms. Note that they do not provide an actual test whether a certain matrix group is a congruence
subgroup or not.

2.2.1 IsPrincipalCongruenceSubgroup

. IsPrincipalCongruenceSubgroup(G) (property)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was con-
structed by PrincipalCongruenceSubgroup (2.1.1) (or reduced to one as a result of an intersection)
and returns false otherwise.

Example

gap> IsPrincipalCongruenceSubgroup(G_8);
true
gap> IsPrincipalCongruenceSubgroup(G0_4);
false
gap> IsPrincipalCongruenceSubgroup(I);
true

2.2.2 IsCongruenceSubgroupGamma0

. IsCongruenceSubgroupGamma0(G) (property)
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For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was
constructed by CongruenceSubgroupGamma0 (2.1.2) (or reduced to one as a result of an intersection)
and returns false otherwise.

2.2.3 IsCongruenceSubgroupGammaUpper0

. IsCongruenceSubgroupGammaUpper0(G) (property)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was
constructed by CongruenceSubgroupGammaUpper0 (2.1.3) (or reduced to one as a result of an inter-
section) and returns false otherwise.

2.2.4 IsCongruenceSubgroupGamma1

. IsCongruenceSubgroupGamma1(G) (property)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was
constructed by CongruenceSubgroupGamma1 (2.1.4) (or reduced to one as a result of an intersection)
and returns false otherwise.

2.2.5 IsCongruenceSubgroupGammaUpper1

. IsCongruenceSubgroupGammaUpper1(G) (property)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was
constructed by CongruenceSubgroupGammaUpper1 (2.1.5) (or reduced to one as a result of an inter-
section) and returns false otherwise.

2.2.6 IsIntersectionOfCongruenceSubgroups

. IsIntersectionOfCongruenceSubgroups(G) (property)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns true if G was con-
structed by IntersectionOfCongruenceSubgroups (2.1.6) and without being one of the canonical
congruence subgroups, otherwise it returns false.

Example

gap> IsIntersectionOfCongruenceSubgroups(I);
false
gap> IsIntersectionOfCongruenceSubgroups(J);
true

2.3 Attributes of congruence subgroups

The next three attributes store key properties of congruence subgroups.
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2.3.1 LevelOfCongruenceSubgroup

. LevelOfCongruenceSubgroup(G) (attribute)

Stores the level of the congruence subgroup G . The (arithmetic) level of a congruence subgroup G
is the smallest positive number N such that G contains the principal congruence subgroup of level N.

Example

gap> LevelOfCongruenceSubgroup(G_8);
8
gap> LevelOfCongruenceSubgroup(G1_6);
6
gap> LevelOfCongruenceSubgroup(I);
4
gap> LevelOfCongruenceSubgroup(J);
12

2.3.2 IndexInSL2Z

. IndexInSL2Z(G) (attribute)

Stores the index of the congruence subgroup G in SL2(Z).
Example

gap> IndexInSL2Z(G_8);
384
gap> G_2:=PrincipalCongruenceSubgroup(2);
<principal congruence subgroup of level 2 in SL_2(Z)>
gap> IndexInSL2Z(G_2);
12
gap> IndexInSL2Z(GU1_4);
12

2.3.3 DefiningCongruenceSubgroups

. DefiningCongruenceSubgroups(G) (attribute)

Returns: list of congruence subgroups
For an intersection of congruence subgroups, returns the list of congruence subgroups forming

this intersection. For a canonical congruence subgroup returns a list of length one containing that
subgroup.

Example

gap> DefiningCongruenceSubgroups(J);
[ <congruence subgroup CongruenceSubgroupGamma_0(4) in SL_2(Z)>,

<congruence subgroup CongruenceSubgroupGamma_1(6) in SL_2(Z)> ]
gap> P:=PrincipalCongruenceSubgroup(6);
<principal congruence subgroup of level 6 in SL_2(Z)>
gap> Q:=PrincipalCongruenceSubgroup(10);
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<principal congruence subgroup of level 10 in SL_2(Z)>
gap> G:=IntersectionOfCongruenceSubgroups(Q,P);
<principal congruence subgroup of level 30 in SL_2(Z)>
gap> DefiningCongruenceSubgroups(G);
[ <principal congruence subgroup of level 30 in SL_2(Z)> ]

2.4 Operations for congruence subgroups

Congruence installs several special methods for operations already available in GAP.

2.4.1 Random (one and two argument versions)

. Random(G) (operation)

. Random(G, m) (operation)

For a congruence subgroup G in the category IsCongruenceSubgroup, returns random element.
In the two-argument form, the second parameter will control the absolute value of randomly selected
entries of the matrix.

Example

gap> Random(G_2) in G_2;
true
gap> Random(G_8,2) in G_8;
true

2.4.2 \in

. \in(m, G) (operation)

It is easy to implement the membership test for congruence subgroups and their intersections.
Example

gap> \in([ [ 21, 10 ], [ 2, 1 ] ],G_2);
true
gap> \in([ [ 21, 10 ], [ 2, 1 ] ],G_8);
false

2.4.3 CanEasilyCompareCongruenceSubgroups

. CanEasilyCompareCongruenceSubgroups(G, H) (operation)

For congruence subgroups G,H in the category IsCongruenceSubgroup, returns true
if G and H are of the same type listed in PrincipalCongruenceSubgroup (2.1.1) –>
CongruenceSubgroupGammaUpper1 (2.1.5) and have the same LevelOfCongruenceSubgroup
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(2.3.1) or if G and H are of the type IntersectionOfCongruenceSubgroups (2.1.6) and the groups
from DefiningCongruenceSubgroups (2.3.3) are in one to one correspondence, otherwise it returns
false.

Example

gap> CanEasilyCompareCongruenceSubgroups(G_8,I);
false

2.4.4 IsSubset

. IsSubset(G, H) (operation)

Congruence provides methods for IsSubset for congruence subgroups. IsSubset returns true
if H is a subset of G . These methods make it possible to use IsSubgroup operation for congruence
subgroups.

Example

gap> IsSubset(G_2,G_8);
true
gap> IsSubset(G_8,G_2);
false
gap> f:=[PrincipalCongruenceSubgroup,CongruenceSubgroupGamma1,CongruenceSubgroupGammaUpper1,CongruenceSubgroupGamma0,CongruenceSubgroupGammaUpper0];;
gap> g1:=List(f, t -> t(2));;
gap> g2:=List(f, t -> t(4));;
gap> for g in g2 do
> Print( List( g1, x -> IsSubgroup(x,g) ), "\n");
> od;
[ true, true, true, true, true ]
[ false, true, false, true, false ]
[ false, false, true, false, true ]
[ false, false, false, true, false ]
[ false, false, false, false, true ]

2.4.5 Index

. Index(G, H) (operation)

If a congruence subgroup H is a subgroup of a congruence subgroup G , we can easily compute the
index of H in G , since we know the index of both subgroups in SL2(Z).

Example

gap> Index(G_2,G_8);
32
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Farey symbols and their properties

A Farey symbol is a compact and useful way to represent a subgroup of finite index in SL2(Z) from
which one can deduce independent generators for this subgroup. It consists of two components,
namely a so-called generalised Farey sequence (gfs ) and an ordered list of labels, giving additional
structure to the gfs .

A generalised Farey sequence (g.F.S.) is an ordered list of the form−in f inity,x0,x1, ...,xn, in f inity,
where

1. the xi = ai/bi are rational numbers in reduced form arranged in increasing order for i = 0, ...,n;
2. x0, ...,xn ∈ Z, and some xi = 0;
3. we define x−1 =−in f inity =−1/0 and xn+1 = in f inity = 1/0;
4. ai+1bi−aibi+1 = 1 for i =−1, ...,n.
The ordered list of labels of a Farey symbol gives an additional structure to the gfs . The labels

correspond to each consecutive pair of xi’s and are of the following types:
1. even,
2. odd,
3. a natural number, which occurs in the list of labels exactly twice or not at all.
Note that the actual values of numerical labels are not important; it is the pairing of two intervals

that matters.
The package Congruence provides functions to construct Farey symbols by the given generalised

Farey sequence and corresponding list of labels. The returned Farey symbol will belong to the category
IsFareySymbol and will have the representation IsFareySymbolDefaultRep.

3.1 Construction of Farey symbols

3.1.1 FareySymbolByData

. FareySymbolByData(gfs, labels) (function)

This constructor creates the Farey symbol with the given generalized Farey sequence and list
of labels. It also checks conditions from the definition of Farey symbol and returns an error
if they are not satisfied. The data used to create the Farey symbol are stored as its attributes
GeneralizedFareySequence (3.2.1) and LabelsOfFareySymbol (3.2.4).

Example

gap> fs:=FareySymbolByData([infinity,0,1,2,infinity],[1,2,2,1]);

13
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[ infinity, 0, 1, 2, infinity ]
[ 1, 2, 2, 1 ]

3.1.2 IsValidFareySymbol

. IsValidFareySymbol(fs) (function)

This function is used in FareySymbolByData (3.1.1) to validate its output.
Example

gap> IsValidFareySymbol(fs);
true

3.2 Properties of Farey symbols

3.2.1 GeneralizedFareySequence

. GeneralizedFareySequence(fs) (attribute)

Returns the generalized Farey sequence gfs of the Farey symbol.
Example

gap> GeneralizedFareySequence(fs);
[ infinity, 0, 1, 2, infinity ]

3.2.2 NumeratorOfGFSElement

. NumeratorOfGFSElement(gfs, i) (function)

Returns: integer
Returns the numerator of the i-th term of the generalised Farey sequence gfs : for the 1st infinite

entry returns -1, for the last one returns 1, for all other entries returns the usual numerator.
Example

gap> List([1..5], i -> NumeratorOfGFSElement(GeneralizedFareySequence(fs),i));
[ -1, 0, 1, 2, 1 ]

3.2.3 DenominatorOfGFSElement

. DenominatorOfGFSElement(gfs, i) (function)

Returns: integer
Returns the denominator of the i-th term of the generalised Farey sequence gfs : for both infinite

entries returns 0, for the other ones returns the usual denominator.
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Example

gap> List([1..5], i -> DenominatorOfGFSElement(GeneralizedFareySequence(fs),i));
[ 0, 1, 1, 1, 0 ]

3.2.4 LabelsOfFareySymbol

. LabelsOfFareySymbol(fs) (attribute)

Returns the list of labels of the Farey symbol. This list has "odd", "even" and paired integers as
entries.

Example

gap> LabelsOfFareySymbol(fs);
[ 1, 2, 2, 1 ]
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Farey symbols for congruence subgroups

The package Congruence provides functions to construct Farey symbols for finite index subgroups.
The algorithm used in the package allows to construct a Farey symbol for any finite index subgroup
of SL2(Z) for which it is possible to check whether a given matrix belongs to this subgroup or not.

The development of an algorithm to determine the Farey symbol for a subgroup G of a finite index
in SL2(Z) was started by Ravi Kulkarni in [Kul91] and later it was improved by Mong-Lung Lang,
Chong-Hai Lim and Ser-Peow Tan in [LLT95b], [LLT95a].

4.1 Computation of the Farey symbol for a finite index subgroup

4.1.1 FareySymbol

. FareySymbol(G) (attribute)

For a subgroup of a finite index G, this attribute stores one of the Farey symbols corresponding
to the congruence subgroup G . The algorithm for its computation will work for any matrix group for
which a membership test is available.

Example

gap> FareySymbol(PrincipalCongruenceSubgroup(8));
[ infinity, 0, 1/4, 1/3, 3/8, 2/5, 1/2, 3/5, 5/8, 2/3, 3/4, 1, 5/4, 4/3,

11/8, 7/5, 3/2, 8/5, 13/8, 5/3, 7/4, 2, 9/4, 7/3, 19/8, 12/5, 5/2, 13/5,
21/8, 8/3, 11/4, 3, 13/4, 10/3, 27/8, 17/5, 7/2, 18/5, 29/8, 11/3, 15/4, 4,
17/4, 13/3, 9/2, 14/3, 19/4, 5, 21/4, 16/3, 11/2, 17/3, 23/4, 6, 25/4,
19/3, 13/2, 20/3, 27/4, 7, 29/4, 22/3, 15/2, 23/3, 31/4, 8, infinity ]

[ 1, 17, 10, 26, 32, 18, 19, 27, 30, 5, 2, 2, 13, 28, 26, 20, 21, 29, 27, 7,
3, 3, 16, 31, 28, 22, 23, 33, 29, 9, 4, 4, 5, 30, 31, 24, 25, 32, 33, 12,
6, 6, 7, 19, 18, 15, 8, 8, 9, 21, 20, 10, 11, 11, 12, 23, 22, 13, 14, 14,
15, 25, 24, 16, 17, 1 ]

gap> FareySymbol(CongruenceSubgroupGamma0(20));
[ infinity, 0, 1/5, 1/4, 2/7, 3/10, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1,

infinity ]
[ 1, 3, 4, 6, 7, 7, 5, 2, 2, 3, 6, 4, 5, 1 ]

16
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4.2 Computation of generators of a finite index subgroup from its Farey
symbol

If fs is the Farey symbol for a group G with r1 even labels, r2 odd labels and r3 pairs of intervals,
then G is generated by r1 + r2 + r3 matrices, which form a set of independent generators for G. These
matrices are constructed as follows:

for each even interval [xi,xi+1], take the matrix

A =

(
ai+1bi+1 +aibi −a2

i −a2
i+1

b2
i +b2

i+1 −ai+1bi+1−aibi

)
for each odd interval [x j,x j+1], take the matrix

B =

(
a j+1b j+1 +a jb j+1 +a jb j −a2

j −a ja j+1−a2
j+1

b2
j +b jb j+1 +b2

j+1 −a j+1b j+1−a j+1b j−a jb j

)
for each pair of free intervals [xk,xk+1] and [xs,xs+1], take the matrix(

as+1bk+1 +asbk −asak−as+1ak+1
bsbk−bs+1bk+1 −ak+1bs+1−akbs

)
4.2.1 MatrixByEvenInterval

. MatrixByEvenInterval(gfs, i) (function)

Returns the matrix corresponding to the even interval i in the generalized Farey sequence gfs .
Example

gap> H:=CongruenceSubgroupGamma0(5);
<congruence subgroup CongruenceSubgroupGamma_0(5) in SL_2(Z)>
gap> fs:=FareySymbol(H);
[ infinity, 0, 1/2, 1, infinity ]
[ 1, "even", "even", 1 ]
gap> gfs:=GeneralizedFareySequence(fs);
[ infinity, 0, 1/2, 1, infinity ]
gap> MatrixByEvenInterval(gfs,2);
[ [ 2, -1 ], [ 5, -2 ] ]

4.2.2 MatrixByOddInterval

. MatrixByOddInterval(gfs, i) (function)

Returns the matrix corresponding to the odd interval i in the generalized Farey sequence gfs .
Example

gap> fs_oo:=FareySymbolByData([infinity,0,infinity],["odd","odd"]);;
gap> gfs_oo:=GeneralizedFareySequence(fs_oo);
[ infinity, 0, infinity ]
gap> MatrixByOddInterval(gfs_oo,1);
[ [ -1, -1 ], [ 1, 0 ] ]
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4.2.3 MatrixByFreePairOfIntervals

. MatrixByFreePairOfIntervals(gfs, k, kp) (function)

Returns the matrix corresponding to the pair of free intervals k and kp in the generalized Farey
sequence gfs .

Example

gap> fs_free:=FareySymbolByData([infinity,0,1,2,infinity],[1,2,2,1]);;
gap> gfs_free:=GeneralizedFareySequence(fs_free);;
gap> MatrixByFreePairOfIntervals(gfs_free,2,3);
[ [ 3, -2 ], [ 2, -1 ] ]

4.2.4 GeneratorsByFareySymbol

. GeneratorsByFareySymbol(fs) (function)

Returns a set of matrices constructed as above.
Example

gap> fs_eo:=FareySymbolByData([infinity,0,infinity],["even","odd"]);;
gap> GeneratorsByFareySymbol(last);
[ [ [ 0, -1 ], [ 1, 0 ] ], [ [ 0, -1 ], [ 1, -1 ] ] ]
gap> GeneratorsByFareySymbol(fs);
[ [ [ 1, 1 ], [ 0, 1 ] ], [ [ 2, -1 ], [ 5, -2 ] ], [ [ 3, -2 ], [ 5, -3 ] ] ]
gap> GeneratorsByFareySymbol(fs_oo);
[ [ [ -1, -1 ], [ 1, 0 ] ], [ [ 0, -1 ], [ 1, -1 ] ] ]
gap> GeneratorsByFareySymbol(fs_free);
[ [ [ 1, 2 ], [ 0, 1 ] ], [ [ 3, -2 ], [ 2, -1 ] ] ]

4.2.5 GeneratorsOfGroup

. GeneratorsOfGroup(G) (function)

Returns a set of generators for the finite index group G in SL2(Z).
Example

gap> G:=PrincipalCongruenceSubgroup(2);
<principal congruence subgroup of level 2 in SL_2(Z)>
gap> FareySymbol(G);
[ infinity, 0, 1, 2, infinity ]
[ 2, 1, 1, 2 ]
gap> GeneratorsOfGroup(G);
#I Using the Congruence package for GeneratorsOfGroup ...
[ [ [ 1, 2 ], [ 0, 1 ] ], [ [ 3, -2 ], [ 2, -1 ] ] ]
gap> H:=CongruenceSubgroupGamma0(5);
<congruence subgroup CongruenceSubgroupGamma_0(5) in SL_2(Z)>
gap> GeneratorsOfGroup(H);
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#I Using the Congruence package for GeneratorsOfGroup ...
[ [ [ 1, 1 ], [ 0, 1 ] ], [ [ 2, -1 ], [ 5, -2 ] ], [ [ 3, -2 ], [ 5, -3 ] ] ]
gap> I:=IntersectionOfCongruenceSubgroups(PrincipalCongruenceSubgroup(2),CongruenceSubgroupGamma0(3));
<intersection of congruence subgroups of resulting level 6 in SL_2(Z)>
gap> FareySymbol(I);
[ infinity, 0, 1/3, 1/2, 2/3, 1, 4/3, 3/2, 5/3, 2, infinity ]
[ 1, 5, 4, 3, 2, 2, 3, 4, 5, 1 ]
gap> GeneratorsOfGroup(I);
#I Using the Congruence package for GeneratorsOfGroup ...
[ [ [ 1, 2 ], [ 0, 1 ] ], [ [ 11, -2 ], [ 6, -1 ] ],

[ [ 19, -8 ], [ 12, -5 ] ], [ [ 17, -10 ], [ 12, -7 ] ],
[ [ 7, -6 ], [ 6, -5 ] ] ]

4.3 Other properties derived from Farey symbols

4.3.1 IndexInPSL2ZByFareySymbol

. IndexInPSL2ZByFareySymbol(fs) (function)

By Proposition 7.2 in [Kulkarni], for the Farey symbol with underlying generalized Farey sequence
[infinity, x0, x1, ..., xn, infinity], the index in PSL2(Z) is given by the formula d = 3*n + e3, where e3
is the number of odd intervals.

Example

gap> IndexInPSL2ZByFareySymbol(fs);
6
gap> IndexInPSL2ZByFareySymbol(fs_oo);
2
gap> IndexInPSL2ZByFareySymbol(fs_free);
6



Chapter 5

Service functions of the Congruence
package

5.1 Additional information displayed by Congruence algorithms

5.1.1 InfoCongruence

. InfoCongruence (info class)

InfoCongruence is a special Info class for Congruence algorithms. It has 3 levels: 0, 1 (default)
and 2. To change the info level to k, use the command SetInfoLevel(InfoCongruence, k).

In the example below we use this mechanism to see more details during the Farey symbol con-
struction for a congruence subgroup.
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