
NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Network Working Group Richard Stallman
Request for Comments 746 MIT-AI
NIC 43976 17 March 1978

The SUPDUP Graphics Extension

 ... extends SUPDUP to permit the display of drawings on the screen of
 the terminal, as well as text. We refer constantly to the
 documentation of the SUPDUP protocol, described by Crispin in RFC 734
 "SUPDUP Protocol".

 Since this extension has never been implemented, it presumably has
 some problems. It is being published to ask for suggestions, and to
 encourage someone to try to bring it up.

The major accomplishments are these:

 * It is easy to do simple things.

 * Any program on the server host can at any time begin outputting
 pictures. No special preparations are needed.

 * No additional network connections are needed. Graphics commands
 go through the normal text output connection.

 * It has nothing really to do with the network. It is suitable
 for use with locally connected intelligent display terminals in
 a terminal-independent manner, by programs which need not know
 whether they are being used locally or remotely. It can be used
 as the universal means of expression of graphics output, for
 whatever destination. Programs can be written to use it for
 non-network terminals, with little loss of convenience, and
 automatically be usable over the ARPA network.

 * Loss of output (due, perhaps, to a "silence" command typed by
 the user) does not leave the user host confused.

 * The terminal does not need to be able to remember the internal
 "semantic" structure of the picture being displayed, but just
 the lines and points, or even just bits in a bit matrix.

 * The server host need not be able to invoke arbitrary
 terminal-dependent software to convert a standard language into
 one that a terminal can use. Instead, a standard language is
 defined which all programmable terminals can interpret easily.
 Major differences between terminals are catered to by
 conventions for including enough redundant information in the
 output stream that all types of terminals will have the
 necessary information available when it is needed, even if they

 -1-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

 are not able to remember it in usable form from one command to
 another.

Those interested in network graphics should read about the Multics
Graphics System, whose fundamental purpose is the same, but whose
particular assumptions are very different (although it did inspire a few
of the features of this proposal).

 -2-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

SUPDUP Initial Negotiation:

 One new optional variable, the SMARTS variable, is defined. It
 should follow the other variables sent by the SUPDUP user process to
 the SUPDUP server process. Bits and fields in the left half-word of
 this variable are given names starting with "%TQ". Bits and fields
 in the right half are given names starting with "%TR". Not all of
 the SMARTS variable has to do with the graphics protocol, but most of
 it does. The %TQGRF bit should be 1 if the terminal supports
 graphics output at all.

Invoking the Graphics Protocol:

 Graphics mode is entered by a %TDGRF (octal 231) code in the output
 stream. Following characters in the range 0 - 177 are interpreted
 according to the graphics protocol. Any character 200 or larger (a
 %TD code) leaves graphics mode, and then has its normal
 interpretation. Thus, if the server forgets that the terminal in
 graphics mode, the terminal will not long remain confused.

 Once in graphics mode, the output stream should contain a sequence of
 graphics protocol commands, each followed by its arguments. A zero
 as a command is a no-op. To leave graphics mode deliberately, it is
 best to use a %TDNOP.

 -3-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Co-ordinates:

 Graphics mode uses a cursor position which is remembered from one
 graphics command to the next while in graphics mode. The graphics
 mode cursor is not the same one used by normal type-out: Graphics
 protocol commands have no effect on the normal type-out cursor, and
 normal type-out has no effect on the graphics mode cursor. In
 addition, the graphics cursor’s position is measured in dots rather
 than in characters. The relationship between the two units (dots,
 and characters) is recorded by the %TQHGT and %TQWID fields of the
 SMARTS variable of the terminal, which contain the height and width
 in dots of the box occupied by a character. The size of the screen
 in either dimension is assumed to be the length of a character box
 times the number of characters in that direction on the screen. If
 the screen is actually bigger than that, the excess is may or may not
 be part of the visible area; the program will not know that it
 exists, in any case.

 Each co-ordinate of the cursor position is a 14-bit signed number,
 where zero is at the center of the screen (if the screen dimension is
 an even number of dots, then the visible negative points extend one
 unit farther that the positive ones, in proper two’s complement
 fashion). Excessively large values of the co-ordinates will be off
 the screen, but are still meaningful.

 An alternate mode is defined, which some terminals may support, in
 which virtual co-ordinates are used. The specified co-ordinates are
 still 14-bit signed numbers, but instead of being in units of
 physical dots on the terminal, it is assumed that +4000 octal is the
 top of the screen or the right edge, while -4000 octal is the bottom
 of the screen or the left edge. The terminal is responsible for
 scaling these virtual co-ordinates into units of screen dots. Not
 all terminals need have this capability; the %TQVIR bit in the SMARTS
 variable indicates that it exists. To use virtual co-ordinates, the
 server should send a %GOVIR; to use physical co-ordinates again, it
 should send a %GOPHY. These should be repeated at intervals, such as
 when graphics mode is entered, even though the terminal must attempt
 to remember the state of the switch anyway. This repetition is so
 that a loss of some output will not cause unbounded confusion.

 The virtual co-ordinates are based on a square. If the visible area
 on the terminal is not a square, then the standard virtual range
 should correspond to a square around the center of the screen, and
 the rest of the visible area should correspond to virtual
 co-ordinates just beyond the normally visible range.

 Graphics protocol commands take two types of cursor position
 arguments, absolute ones and relative ones. Commands that take
 address arguments generally have two forms, one for each type of

 -4-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

 address. A relative address consists of two offsets, delta-X and
 delta-Y, from the old cursor position. Each offset is a 7-bit two’s
 complement number occupying one character. An absolute address
 consists of two co-ordinates, each 14 bits long, occupying two
 characters, each of which conveys 7 bits. The X co-ordinate or
 offset precedes the Y. Both types of address set the running cursor
 position which will be used by the next address, if it is relative.
 It is perfectly legitimate for parts of objects to go off the screen.
 What happens to them is not terribly important, as long as it is not
 disastrous, does not interfere with the reckoning of the cursor
 position, and does not cause later objects, drawn after the cursor
 moves back onto the screen, to be misdrawn.

 Whether a particular spot on the screen is specified with an absolute
 or a relative address is of no consequence. The sequence in which
 they are drawn is of no consequence. Each object is independent of
 all others, and exists at the place which was specified, in one way
 or other, by the command that created it. Relative addresses are
 provided for the sake of data compression. They are not an attempt
 to spare programs the need for the meagre intelligence required to
 convert between absolute and relative addresses; more intelligence
 than that will surely be required for other aspects of the graphics
 protocol. Nor are relative addresses intended to cause several
 objects to relocate together if one is "moved" or erased. Terminals
 are not expected to remember any relation between objects once they
 are drawn. Most will not be able to.

 Although the cursor position on entry to graphics mode remains set
 from the last exit, it is wise to reinitialize it with a %GOMVA
 command before any long transfer, to limit the effects of lost
 output.

 -5-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Commands:

 Commands to draw an object always have counterparts which erase the
 same object. On a bit matrix terminal, erasure and drawing are
 almost identical operations. On a display list terminal, erasure
 involves searching the display list for an object with the specified
 characteristics and deleting it from the list. It is assumed that
 any terminal whose %TOERS bit is set can erase graphic objects.

 The commands to draw objects run from 100 to 137, while those to
 erase run in a parallel sequence from 140 to 177. Other sorts of
 operations have command codes below 100. Meanwhile, the 20 bit in
 the command code says which type of addresses are used as arguments:
 if the 20 bit is set, absolute addresses are used. Graphics commands
 are given names starting with "%GO".

 Graphics often uses characters. The %GODCH command is followed by a
 string of characters to be output, terminated by a zero. The
 characters must be single-position printing characters. On most
 terminals, this limits them to ASCII graphic characters. Terminals
 with %TOSAI set in the TTYOPT variable allow all characters 0-177.
 The characters are output at the current graphics cursor position
 (the lower left hand corner of the first character’s rectangle being
 placed there), which is moved as the characters are drawn. The
 normal type-out cursor is not relevant and its position is not
 changed. The cursor position at which the characters are drawn may
 be in between the lines and columns used for normal type-out. The
 %GOECH command is similar to %GODCH but erases the characters
 specified in it. To clear out a row of character positions on a bit
 matrix terminal without having to respecify the text, a rectangle
 command may be used.

 Example:

 The way to send a simple line drawing is this:

 %TDRST ;Reset all graphics modes.
 %TDGRF ;Enter graphics.
 %GOCLR ;Clear the screen.
 %GOMVA xx yy ;Set cursor.
 %GODLA xx yy ;Draw line from there.
 << repeat last two commands for each line >>
 %TDNOP ;Exit graphics.

 -6-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Graphics Input:

 The %TRGIN bit in the right half of the SMARTS variable indicates
 that the terminal can supply a graphic input in the form of a cursor
 position on request. Sending a %GOGIN command to the terminal asks
 to read the cursor position. It should be followed by an argument
 character that will be included in the reply, and serve to associate
 the reply with the particular request for input that elicited it.
 The reply should have the form of a Top-Y character (code 4131),
 followed by the reply code character as just described, followed by
 an absolute cursor position. Since Top-Y is not normally meaningful
 as input, %GOGIN replies can be distinguished reliably from keyboard
 input. Unsolicited graphic input should be sent using a Top-X instead
 of a Top-Y, so that the program can distinguish them. Instead of a
 reply code, for which there is no need, the terminal should send an
 encoding of the buttons pressed by the user on his input device, if
 it has more than one.

Sets:

 Terminals may define the concept of a "set" of objects. There are up
 to 200 different sets, each of which can contain arbitrarily many
 objects. At any time, one set is selected; objects drawn become part
 of that set, and objects erased are removed from it. Objects in a
 set other than the selected one cannot be erased without switching to
 the sets that contain them. A set can be made temporarily invisible,
 as a whole, without being erased or its contents forgotten; and it
 can then be made instantly visible again. Also, a whole set can be
 moved. A set has at all times a point identified as its "center",
 and all objects in it are actually remembered relative to that
 center, which can be moved arbitrarily, thus moving all the objects
 in the set at once. Before beginning to use a set, therefore, one
 should "move" its center to some absolute location. Set center
 motion can easily cause objects in the set to move off screen. When
 this happens, it does not matter what happens temporarily to those
 objects, but their "positions" must not be forgotten, so that undoing
 the set center motion will restore them to visibility in their
 previous positions. Sets are not easily implemented on bit matrix
 terminals, which should therefore ignore all set operations (except,
 for a degenerate interpretation in connection with blinking, if that
 is implemented). The %TQSET bit in the SMARTS variable of the
 terminal indicates that the terminal implements multiple sets of
 objects.

 On a terminal which supports multiple sets, the %GOCLR command should
 empty all sets and mark all sets "visible" (perform a %GOVIS on each
 one). So should a %TDCLR SUPDUP command. Thus, any program which
 starts by clearing the screen will not have to worry about
 initializing the states of all sets.

 -7-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Blinking:

 Some terminals have the ability to blink objects on the screen. The
 command %GOBNK meaning make the current set blink. All objects in it
 already begin blinking, and any new objects also blink. %GOVIS or
 %TOINV cancels the effect of a %GOBNK, making the objects of the set
 permanently visible or invisible. %TQBNK indicates that the terminal
 supports blinking on the screen.

 However, there is a problem: some intelligent bit matrix terminals
 may be able to implement blinking a few objects, if they are told in
 advance, before the objects are drawn. They will be unable to
 support arbitrary use of %GOBNK, however.

 The solution to the problem is a convention for the use of %TOBNK
 which, together with degenerate definitions for set operations, makes
 it possible to give commands which reliably work on any terminal
 which supports blinking.

 On a terminal which sets %TQBNK but not %TQSET, %GOBNK is defined to
 cause objects which are drawn after it to be drawn blinking. %GOSET
 cancels this, so following objects will be drawn unblinking. This is
 regardless of the argument to the %GOSET.

 Thus, the way for a program to work on all terminals with %TQBNK,
 whether they know about sets or not, is: to write a bliniking
 picture, select some set other than your normal one (set 1 will do),
 do %GOBNK, output the picture, and reselect set 0. The picture will
 blink, while you draw things in set 0. To draw more blinking
 objects, you must reselect set 1 and do another %GOBNK. Simply
 reselecting set 1 will not work on terminals which don’t really
 support sets, since they don’t remember that the blinking objects are
 "in set 1" and not "in set 0".

 Erasing a blinking object should make it disappear, on any terminal
 which implements blinking. On bit matrix terminals, blinking MUST
 always be done by XORing, so that the non-blinking background is not
 destroyed.

 %GOCLS, on a terminal which supports blinking but not sets, should
 delete all blinking objects. Then, the convention for deleting all
 blinking objects is to select set 1, do a %GOCLS, and reselect set 0.
 This has the desired effect on all terminals. This definition of
 %GOCLS causes no trouble on non-set terminals, since %GOCLS would
 otherwise be meaningless to them.

 To make blinking objects stop blinking but remain visible is possible
 with a %GOVIS on a terminal which supports sets. But in general the
 only way to do it is to delete them and redraw them as permanent.

 -8-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Rectangles and XOR

 Bit matrix terminals have their own operations that display list
 terminals cannot duplicate. First of all, they have XOR mode, in
 which objects drawn cancel existing objects when they overlap. In
 this mode, drawing an object and erasing it are identical operations.
 All %GOD.. commands act IDENTICALLY to the corresponding %GOE..’s.
 XOR mode is entered with a %GOXOR and left with a %GOIOR. Display
 list terminals will ignore both commands. For that reason, the
 program should continue to distinguish draw commands from erase
 commands even in XOR mode. %TQXOR indicates a terminal which
 implements XOR mode. XOR mode, when set, remains set even if
 graphics mode is left and re-entered. However, it is wise to
 re-specify it from time to time, in case output is lost.

 Bit matrix terminals can also draw solid rectangles. They can thus
 implement the commands %GODRR, %GODRA, %GOERR, and %GOERA. A
 rectangle is specified by taking the current cursor position to be
 one corner, and providing the address of the opposite corner. That
 can be done with either a relative address or an absolute one. The
 %TQREC bit indicates that the terminal implements rectangle commands.

 Of course, a sufficiently intelligent bit matrix terminal can provide
 all the features of a display list terminal by remembering display
 lists which are redundant with the bit matrix, and using them to
 update the matrix when a %GOMSR or %GOVIS is done. However, most bit
 matrix terminals are not expected to go to such lengths.

 -9-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

How Several Process Can Draw On One Terminal Without Interfering With
Each Other:

 If we define "input-stream state" information to be whatever
 information which can affect the action of any command, other than
 what is contained in the command, then each of the several processes
 must have its own set of input-stream state variables.

 This is accomplished by providing the %GOPSH command. The %GOPSH
 command saves all such input-stream information, to be restored when
 graphics mode is exited. If the processes can arrange to output
 blocks of characters uninterruptibly, they can begin each block with
 a %GOPSH followed by commands to initialize the input-stream state
 information as they desire. Each block of graphics output should be
 ended by a %TDNOP, leaving the terminal in its "normal" state for all
 the other processes, and at the same time popping the what the %GOPSH
 pushed.

 The input-stream state information consists of:

 The cursor position
 the state of XOR mode (default is OFF)
 the selected set (default is 0)
 the co-ordinate unit in use (physical dots, or virtual)
 (default is physical)
 whether output is going to the display screen or to a hardcopy
 device (default is to the screen)
 what portion of the screen is in use
 (see "Using Only Part of the Screen")
 (default is all)

 Each unit of input-stream status has a default value for the sake of
 programs that do not know that the information exists; the exception
 is the cursor position, since all programs must know that it exists.
 A %TDINI or %TDRST command should set all of the variables to their
 default values.

 The state of the current set (whether it is visible, and where its
 center is) is not part of the input-stream state information, since
 it would be hard to say what it would mean if it were. Besides, the
 current set number is part of the input-stream state information, so
 different processes can use different sets. The allocation of sets
 to processes is the server host’s own business.

 -10-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Using Only Part of the Screen:

 It is sometimes desirable to use part of the screen for picture and
 part for text. Then one may wish to clear the picture without
 clearing the text. On display list terminals, %GOCLR should do this.
 On bit matrix terminals, however, %GOCLR can’t tell which bits were
 set by graphics and which by text display. For their sake, the
 %GOLMT command is provided. This command takes two cursor positions
 as arguments, specifying a rectangle. It declares that graphics will
 be limited to that rectangle, so %GOCLR should clear only that part
 of the screen. %GOLMT need not do anything on a terminal which can
 remember graphics output as distinct from text output and clear the
 former selectively, although it would be a desirable feature to
 process it even on those terminals.

 %GOLMT can be used to enable one of several processes which divide up
 the screen among themselves to clear only the picture that it has
 drawn, on a bit matrix terminal. By using both %GOLMT and distinct
 sets, it is possible to deal successfully with almost any terminal,
 since bit matrix terminals will implement %GOLMT and display list
 terminals almost always implement sets.

 The %TDCLR command should clear the whole screen, including graphics
 output, ignoring %GOLMT.

Errors:

 In general, errors in graphics commands should be ignored.

 Since the output and input streams are not synchronized unless
 trouble is taken, there is no simple way to report an error well
 enough for the program that caused it to identify just which command
 was invalid. So it is better not to try.

 Errors which are not the fault of any individual command, such as
 running out of memory for display lists, should also be ignored as
 much as possible. This does NOT mean completely ignoring the
 commands that cannot be followed; it means following them as much as
 possible: moving the cursor, selecting sets, etc. as they specify, so
 that any subsequent commands which can be executed are executed as
 intended.

 -11-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Extensions:

 This protocol does not attempt to specify commands for dealing with
 every imaginable feature which a picture-drawing device can have.
 Additional features should be left until they are needed and well
 understood, so that they can be done right.

Storage of Graphics Commands in Files:

 This can certainly be done. Since graphics commands are composed
 exclusively of the ASCII characters 0 - 177, any file that can hold
 ASCII text can hold the commands to draw a picture. This is less
 useful than you might think, however. Any program for editing, in
 whatever loose sense, a picture, will have its own internal data
 which determine the relationships between the objects depicted, and
 control the interpretation of the programs commands, and this data
 will all be lost in the SUPDUP graphics commands for displaying the
 picture. Thus, each such program will need to have its own format for
 storing pictures in files, suitable for that program’s internal data
 structure. Inclusion of actual graphics commands in a file will be
 useful only when the sole purpose of the file is to be displayed.

 -12-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Note: the values of these commands are represented as 8.-bit octal
bytes. Arguments to the commands are in lower case inside angle
brackets.

The Draw commands are:

Value Name Arguments

101 %GODLR <p>
 Draw line relative, from the cursor to <p>.
102 %GODPR <p>
 Draw point relative, at <p>.
103 %GODRR <p>
 Draw rectangle relative, corners at <p> and at the
 current cursor position.
104 %GODCH <string> <0>
 Display the chars of <string> starting at the current
 graphics cursor position.
121 %GODLA <p>
 Draw line absolute, from the cursor to <p>. The same
 effect as %GODLR, but the arg is an absolute address.
122 %GODPA <p>
 Draw point absolute, at <p>.
123 %GODRA <p>
 Draw rectangle absolute, corners at <p> and at the
 current cursor position.

The Erase commands are:

Value Name Arguments

141 %GOELR <p>
 Erase line relative, from the cursor to <p>.
142 %GOEPR <p>
 Erase point relative, at <p>.
143 %GOERR <p>
 Erase rectangle relative, corners at <p> and at the
 current cursor position.
144 %GOECH <string> <0>
 Erase the chars of <string> starting at the current
 graphics cursor position.
161 %GOELA <p>
 Erase line absolute, from the cursor to <p>.
162 %GOEPA <p>
 Erase point absolute, at <p>.
163 %GOERA <p>
 Erase rectangle absolute, corners at <p> and at the
 current cursor position.

 -13-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

The miscellaneous commands are:

Value Name Arguments

001 %GOMVR <p>
 Move cursor to point <p>
021 %GOMVA <p>
 Move cursor to point <p>, absolute address.
002 %GOXOR
 Turn on XOR mode. Bit matrix terminals only.
022 %GOIOR
 Turn off XOR mode.
003 %GOSET <n>
 Select set. <n> is a 1-character set number, 0 - 177.
004 %GOMSR <p>
 Move set origin to <p>. Display list terminals only.
024 %GOMSA <p>
 Move set origin to <p>, absolute address.
006 %GOINV
 Make current set invisible.
026 %GOVIS
 Make current set visible.
007 %GOBNK
 Make current set blink. Canceled by %GOINV or %GOVIS.
010 %GOCLR
 Erase whole screen.
030 %GOCLS
 Erase entire current set (display list terminals).
011 %GOPSH
 Push all input-stream status information, to be restored
 when graphics mode is exited.
012 %GOVIR
 Start using virtual co-ordinates
032 %GOPHY
 Resume giving co-ordinates in units of dots.
013 %GOHRD <n>
 Divert output to output subdevice <n>. <n>=0 reselects
 the main display screen.
014 %GOGIN <n>
 Request graphics input (mouse, tablet, etc). <n> is the
 reply code to include in the answer.
015 %GOLMT <p1> <p2>
 Limits graphics to a subrectangle of the screen. %GOCLR
 will clear only that area. This is for those who would
 use the rest for text.

 -14-

NWG/RFC# 746 RMS 17-MAR-78 43976
The SUPDUP Graphics Extension

Bits in the SMARTS Variable Related to Graphics:

Note: the values of these bits are represented as octal 36.-bit words,
with the left and right 18.-bit halfword separated by two commas as in
the normal PDP-10 convention.

Name Value Description

%TQGRF 000001,,0 terminal understands graphics protocol.

%TQSET 000002,,0 terminal supports multiple sets.

%TQREC 000004,,0 terminal implements rectangle commands.

%TQXOR 000010,,0 terminal implements XOR mode.

%TQBNK 000020,,0 terminal implements blinking.

%TQVIR 000040,,0 terminal implements virtual co-ordinates.

%TQWID 001700,,0 character width, in dots.

%TQHGT 076000,,0 character height, in dots.

%TRGIN 0,,400000 terminal can provide graphics input.

%TRGHC 0,,200000 terminal has a hard-copy device to which output can
 be diverted.

 -15-

