
Internet Engineering Task Force (IETF) R. Barnes
Request for Comments: 7165 Mozilla
Category: Informational April 2014
ISSN: 2070-1721

 Use Cases and Requirements for
 JSON Object Signing and Encryption (JOSE)

Abstract

 Many Internet applications have a need for object-based security
 mechanisms in addition to security mechanisms at the network layer or
 transport layer. For many years, the Cryptographic Message Syntax
 (CMS) has provided a binary secure object format based on ASN.1.
 Over time, binary object encodings such as ASN.1 have become less
 common than text-based encodings, such as the JavaScript Object
 Notation (JSON). This document defines a set of use cases and
 requirements for a secure object format encoded using JSON, drawn
 from a variety of application security mechanisms currently in
 development.

Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are a candidate for any level of Internet
 Standard; see Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7165.

Barnes Informational [Page 1]

RFC 7165 JOSE Use Cases April 2014

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Definitions . 4
 3. Basic Requirements . 5
 4. Requirements on Application Protocols 6
 5. Use Cases . 7
 5.1. Security Tokens . 7
 5.2. OAuth . 7
 5.3. OpenID Connect . 9
 5.4. XMPP . 10
 5.5. ALTO . 12
 5.6. Emergency Alerting 13
 5.7. Web Cryptography . 15
 5.8. Constrained Devices 16
 5.8.1. Example: MAC Based on ECDH-Derived Key 16
 5.8.2. Object Security for CoAP 17
 6. Requirements . 18
 6.1. Functional Requirements 18
 6.2. Security Requirements 19
 6.3. Desiderata . 20
 7. Security Considerations 20
 8. References . 21
 8.1. Normative References 21
 8.2. Informative References 21
 Appendix A. Acknowledgements 25

Barnes Informational [Page 2]

RFC 7165 JOSE Use Cases April 2014

1. Introduction

 Internet applications rest on the layered architecture of the
 Internet and take advantage of security mechanisms at all layers.
 Many applications rely primarily on channel-based security
 technologies such as IPsec and Transport Layer Security (TLS), which
 create a secure channel at the IP layer or transport layer over which
 application data can flow [RFC4301] [RFC5246]. These mechanisms,
 however, cannot provide end-to-end security in some cases. For
 example, in protocols with application-layer intermediaries, channel-
 based security protocols would protect messages from attackers
 between intermediaries, but not from the intermediaries themselves.
 These cases require object-based security technologies, which embed
 application data within a secure object that can be safely handled by
 untrusted entities.

 The most well-known example of such a protocol today is the use of
 Secure/Multipurpose Internet Mail Extensions (S/MIME) protections
 within the email system [RFC5751] [RFC5322]. An email message
 typically passes through a series of intermediate Mail Transfer
 Agents (MTAs) en route to its destination. While these MTAs often
 apply channel-based security protections to their interactions (e.g.,
 STARTTLS [RFC3207]), these protections do not prevent the MTAs from
 interfering with the message. In order to provide end-to-end
 security protections in the presence of untrusted MTAs, mail users
 can use S/MIME to embed message bodies in a secure object format that
 can provide confidentiality, integrity, and data origin
 authentication.

 S/MIME is based on the Cryptographic Message Syntax (CMS) for secure
 objects [RFC5652]. CMS is defined using Abstract Syntax Notation 1
 (ASN.1) and typically encoded using the ASN.1 Distinguished Encoding
 Rules (DER), which define a binary encoding of the protected message
 and associated parameters [ITU.X690.2002]. In recent years, usage of
 ASN.1 has decreased (along with other binary encodings for general
 objects), while more applications have come to rely on text-based
 formats such as the Extensible Markup Language (XML) [W3C.REC-xml] or
 the JavaScript Object Notation (JSON) [RFC7159].

 Many current applications thus have much more robust support for
 processing objects in these text-based formats than ASN.1 objects;
 indeed, many lack the ability to process ASN.1 objects at all. To
 simplify the addition of object-based security features to these
 applications, the IETF JSON Object Signing and Encryption (JOSE)
 working group has been chartered to develop a secure object format
 based on JSON. While the basic requirements for this object format
 are straightforward -- namely, confidentiality and integrity
 mechanisms encoded in JSON -- discussions in the working group

Barnes Informational [Page 3]

RFC 7165 JOSE Use Cases April 2014

 indicated that different applications hoping to use the formats
 defined by JOSE have different requirements. This document
 summarizes the use cases for JOSE envisioned by those potential
 applications and the resulting requirements for security mechanisms
 and object encodings.

 Some systems that use XML have specified the use of XML-based
 security mechanisms for object security, namely XML Digital
 Signatures and XML Encryption [W3C.xmldsig-core] [W3C.xmlenc-core].
 These mechanisms are used by several security token systems (e.g.,
 Security Assertion Markup Language (SAML) [OASIS.saml-core-2.0-os],
 Web Services Federation [WS-Federation]), and the Common Alerting
 Protocol (CAP) emergency alerting format [CAP]. In practice,
 however, XML-based secure object formats introduce similar levels of
 complexity to ASN.1 (e.g., due to the need for XML canonicalization),
 so developers that lack the tools or motivation to handle ASN.1
 aren’t likely to use XML security either. This situation motivates
 the creation of a JSON-based secure object format that is simple
 enough to implement and deploy that it can be easily adopted by
 developers with minimal effort and tools.

2. Definitions

 This document makes extensive use of standard security terminology
 [RFC4949]. In addition, because the use cases for JOSE and CMS are
 similar, we will sometimes make analogies to some CMS concepts
 [RFC5652].

 The JOSE working group charter calls for the group to define three
 basic JSON object formats:

 1. Integrity-protected object format

 2. Confidentiality-protected object format

 3. A format for expressing keys

 In this document, we will refer to these as the "signed object
 format", the "encrypted object format", and the "key format",
 respectively. The JOSE working group items intended to describe
 these formats are JSON Web Signature [JWS], JSON Web Encryption
 [JWE], and JSON Web Key [JWK], respectively. Algorithms and
 algorithm identifiers used by JWS, JWE, and JWK are defined in JSON
 Web Algorithms [JWA].

 In general, where there is no need to distinguish between asymmetric
 and symmetric operations, we will use the terms "signing",
 "signature", etc., to denote both true digital signatures involving

Barnes Informational [Page 4]

RFC 7165 JOSE Use Cases April 2014

 asymmetric cryptography as well as Message Authentication Codes
 (MACs) using symmetric keys.

 In the lifespan of a secure object, there are two basic roles, an
 entity that creates the object (e.g., encrypting or signing a
 payload) and an entity that uses the object (decrypting and
 verifying). We will refer to these roles as "sender" and
 "recipient", respectively. Note that while some requirements and use
 cases may refer to these as single entities, each object may have
 multiple entities in each role. For example, a message may be signed
 by multiple senders or decrypted by multiple recipients.

3. Basic Requirements

 For the encrypted and signed object formats, the necessary
 protections will be created using appropriate cryptographic
 mechanisms: symmetric or asymmetric encryption for confidentiality
 and MACs or digital signatures for integrity protection. In both
 cases, it is necessary for the JOSE format to support both symmetric
 and asymmetric operations.

 o The JOSE encrypted object format must support object encryption in
 the case where the sender and receiver share a symmetric key.

 o The JOSE encrypted object format must support object encryption in
 the case where the sender has only a public key for the receiver.

 o The JOSE signed object format must support integrity protection
 using MACs, for the case where the sender and receiver share only
 a symmetric key.

 o The JOSE signed object format must support integrity protection
 using digital signatures, for the case where the receiver has only
 a public key for the sender.

 In some applications, the key used to process a JOSE object is
 indicated by application context, instead of directly in the JOSE
 object. However, in order to avoid confusion, endpoints that lack
 the necessary context need to be able to recognize this and fail
 cleanly. Other than keys, JOSE objects do not support pre-
 negotiation; all cryptographic parameters must be expressed directly
 in the JOSE object.

 o The JOSE signed and encrypted object formats must define the
 process by which an implementation recognizes whether it has the
 key required to process a given object, whether the key is
 specified by the object or by some out-of-band mechanism.

Barnes Informational [Page 5]

RFC 7165 JOSE Use Cases April 2014

 o Each algorithm used for JOSE must define which parameters are
 required to be present in a JOSE object using that algorithm.

 In cases where two entities are going to be exchanging several JOSE
 objects, it might be helpful to pre-negotiate some parameters so that
 they do not have to be signaled in every JOSE object. However, so as
 not to confuse endpoints that do not support pre-negotiation, it is
 useful to signal when pre-negotiated parameters are in use in those
 cases.

 o It should be possible to extend the base JOSE signed and encrypted
 object formats to indicate that pre-negotiated parameters are to
 be used to process the object. This extension should also provide
 a means of indicating which parameters are to be used.

 The purpose of the key format is to provide the recipient with
 sufficient information to use the encoded key to process
 cryptographic messages. Thus, it is sometimes necessary to include
 additional parameters along with the bare key.

 o The JOSE key format must enable inclusion of all algorithm
 parameters necessary to use the encoded key, including an
 identifier for the algorithm with which the key is used as well as
 any additional parameters required by the algorithm (e.g.,
 elliptic curve parameters).

4. Requirements on Application Protocols

 The JOSE secure object formats describe how cryptographic processing
 is done on secured content, ensuring that the recipient of an object
 is able to properly decrypt an encrypted object or verify a
 signature. In order to make use of JOSE, however, applications will
 need to specify several aspects of how JOSE is to be used:

 o What application content is to be protected

 o Which cryptographic algorithms are to be used

 o How application protocol entities establish keys

 o Whether keys are to be explicitly indicated in JOSE objects or
 associated by application context

 o Which serialization(s) of JOSE objects are to be used

Barnes Informational [Page 6]

RFC 7165 JOSE Use Cases April 2014

5. Use Cases

 Several IETF working groups developing application-layer protocols
 have expressed a desire to use the JOSE data formats in their designs
 for end-to-end security features. In this section, we summarize the
 use cases proposed by these groups and discuss the requirements that
 they imply for the JOSE object formats.

5.1. Security Tokens

 Security tokens are a common use case for object-based security, for
 example, SAML assertions [OASIS.saml-core-2.0-os]. Security tokens
 are used to convey information about a subject entity ("claims" or
 "assertions") from an issuer to a recipient. The security features
 of a token format enable the recipient to verify that the claims came
 from the issuer and, if the object is confidentiality protected, that
 they were not visible to other parties.

 Security tokens are used in federation protocols such as SAML 2.0
 [OASIS.saml-core-2.0-os], WS-Federation [WS-Federation], Mozilla
 Persona [Persona], and OpenID Connect [OpenID.Core], as well as in
 resource authorization protocols such as OAuth 2.0 [RFC6749],
 including for OAuth bearer tokens [RFC6750]. In some cases, security
 tokens are used for client authentication and for access control
 [JWT-BEARER] [SAML2].

 JSON Web Token [JWT] is a security token format based on JSON and
 JOSE. It is used with Mozilla Persona, OpenID Connect, and OAuth.
 Because JWTs are often used in contexts with limited space (e.g.,
 HTTP query parameters), it is a core requirement for JWTs, and thus
 JOSE, to have a compact, URL-safe representation.

5.2. OAuth

 The OAuth protocol defines a mechanism for distributing and using
 authorization tokens using HTTP [RFC6749]. A client that wishes to
 access a protected resource requests authorization from the resource
 owner. If the resource owner allows this access, he directs an
 authorization server to issue an access token to the client. When
 the client wishes to access the protected resource, he presents the
 token to the relevant resource server, which verifies the validity of
 the token before providing access to the protected resource.

Barnes Informational [Page 7]

RFC 7165 JOSE Use Cases April 2014

 +---------------+ +---------------+
 | | | |
 | Resource |<........>| Authorization |
 | Server | | Server |
 | | | |
 +---------------+ +---------------+
 ^ |
 | |
 | |
 | |
 | |
 +------------|--+ +--|------------+
 | +----------------+ |
 | | | Resource |
 | Client | | Owner |
 | | | |
 +---------------+ +---------------+

 Figure 1: The OAuth Process

 In effect, this process moves the token from the authorization server
 (as a sender of the object) to the resource server (recipient) via
 the client as well as the resource owner (the latter because of the
 HTTP mechanics underlying the protocol). As with email, we have a
 case where an application object is transported via untrusted
 intermediaries.

 This application has two essential security requirements: integrity
 and data origin authentication. Integrity protection is required so
 that the resource owner and the client cannot modify the permission
 encoded in the token. Although the resource owner is ultimately the
 entity that grants authorization, it is not trusted to modify the
 authorization token, since this could, for example, grant access to
 resources not owned by the resource owner.

 Data origin authentication is required so that the resource server
 can verify that the token was issued by a trusted authorization
 server.

 Confidentiality protection may also be needed if the authorization
 server is concerned about the visibility of permissions information
 to the resource owner or client. For example, permissions related to
 social networking might be considered private information. Note,
 however, that OAuth already requires that the underlying HTTP
 transactions be protected by TLS, so tokens are already
 confidentiality protected from entities other than the resource owner
 and client.

Barnes Informational [Page 8]

RFC 7165 JOSE Use Cases April 2014

 The confidentiality and integrity needs are met by the basic
 requirements for signed and encrypted object formats, whether the
 signing and encryption are provided using asymmetric or symmetric
 cryptography. The choice of which mechanism is applied will depend
 on the relationship between the two servers, namely whether they
 share a symmetric key or only public keys.

 Authentication requirements will also depend on deployment
 characteristics. Where there is a relatively strong binding between
 the resource server and the authorization server, it may suffice for
 the authorization server issuing a token to be identified by the key
 used to sign the token. This requires that the protocol carry either
 the public key of the authorization server or an identifier for the
 public or symmetric key. In OAuth, the "client_id" parameter
 (external to the token) identifies the key to be used.

 There may also be more advanced cases where the authorization
 server’s key is not known in advance to the resource server. This
 may happen, for instance, if an entity instantiated a collection of
 authorization servers (say for load balancing), each of which has an
 independent key pair. In these cases, it may be necessary to also
 include a certificate or certificate chain for the authorization
 server, so that the resource server can verify that the authorization
 server is an entity that it trusts.

 The HTTP transport for OAuth imposes a particular constraint on the
 encoding. In the OAuth protocol, tokens frequently need to be passed
 as query parameters in HTTP URIs [RFC2616] after having been
 base64url encoded [RFC4648]. While there is no specified limit on
 the length of URIs (and thus of query parameters), in practice, URIs
 of more than 2,048 characters are rejected by some user agents. So
 this use case requires that JOSE objects be sufficiently small, even
 after being signed and possibly encrypted.

5.3. OpenID Connect

 The OpenID Connect protocol [OpenID.Core] is a simple, REST/JSON-
 based identity federation protocol layered on OAuth 2.0. It uses the
 JWT and JOSE formats both to represent security tokens and to provide
 security for other protocol messages (performing signing and
 optionally encryption). OpenID Connect negotiates the algorithms to
 be used and distributes information about the keys to be used using
 protocol elements that are not part of the JWT and JOSE header
 parameters.

 In the OpenID Connect context, it is possible for the recipient of a
 JWT to accept it without integrity protection in the JWT itself. In
 such cases, the recipient chooses to rely on transport security

Barnes Informational [Page 9]

RFC 7165 JOSE Use Cases April 2014

 rather than object security. For example, if the payload is
 delivered over a TLS-protected channel, the recipient may regard the
 protections provided by TLS as sufficient, so JOSE protection would
 not be required.

 However, even in this case, it is desirable to associate some
 metadata with the JWT payload (claim set), such as the content type,
 or other application-specific metadata. In a signed or encrypted
 object, these metadata values could be carried in a header with other
 metadata required for signing or encryption. It would thus simplify
 the design of OpenID Connect if there could be a JOSE object format
 that does not apply cryptographic protections to its payload, but
 allows a header to be attached to the payload in the same way as a
 signed or encrypted object.

5.4. XMPP

 The Extensible Messaging and Presence Protocol (XMPP) routes messages
 from one end client to another by way of XMPP servers [RFC6120].
 There are typically two servers involved in delivering any given
 message: The first client (Alice) sends a message for another client
 (Bob) to her server (A). Server A uses Bob’s identity and the DNS to
 locate the server for Bob’s domain (B) and then delivers the message
 to that server. Server B then routes the message to Bob.

 +-------+ +----------+ +----------+ +-----+
 | Alice |-->| Server A |-->| Server B |-->| Bob |
 +-------+ +----------+ +----------+ +-----+

 Figure 2: Delivering an XMPP Message

 The untrusted-intermediary problems are especially acute for XMPP
 because in many current deployments, the holder of an XMPP domain
 outsources the operation of the domain’s servers to a different
 entity. In this environment, there is a clear risk of exposing the
 domain holder’s private information to the domain operator. XMPP
 already has a defined mechanism for end-to-end security using S/MIME,
 but it has failed to gain widespread deployment [RFC3923], in part
 because of key management challenges and in part because of the
 difficulty of processing S/MIME objects.

 The XMPP working group is in the process of developing a new
 end-to-end encryption system with an encoding based on JOSE and a
 clearer key management system [XMPP-E2E]. The process of sending an
 encrypted message in this system involves two steps: First, the
 sender generates a symmetric Session Master Key (SMK), encrypts the
 message content (including a per-message Content Master Key), and
 sends the encrypted message to the desired set of recipients.

Barnes Informational [Page 10]

RFC 7165 JOSE Use Cases April 2014

 Second, each recipient "dials back" to the sender, providing his
 public key. The sender then responds with the relevant SMK, wrapped
 with the recipient’s public key.

 +-------+ +----------+ +----------+ +-----+
 | Alice |<->| Server A |<->| Server B |<->| Bob |
 +-------+ +----------+ +----------+ +-----+
 | | | |
 |------------Encrypted message---------->|
 | | | |
 |<---------------Public key--------------|
 | | | |
 |---------------Wrapped SMK------------->|
 | | | |

 Figure 3: Delivering a Secure XMPP Message

 The main thing that this system requires from the JOSE formats is
 confidentiality protection via content encryption, plus an integrity
 check via a MAC derived from the same symmetric key. The separation
 of the key exchange from the transmission of the encrypted content,
 however, requires that the JOSE encrypted object format allow wrapped
 symmetric keys to be carried separately from the encrypted payload.
 In addition, the encrypted object will need to have a tag for the key
 that was used to encrypt the content, so that the recipient (Bob) can
 present the tag to the sender (Alice) when requesting the wrapped
 key.

 Another important feature of XMPP is that it allows for the
 simultaneous delivery of a message to multiple recipients. In the
 diagrams above, Server A could deliver the message not only to Server
 B (for Bob) but also to Servers C, D, E, etc., for other users. In
 such cases, to avoid the multiple "dial back" transactions implied by
 the above mechanism, XMPP systems will likely reuse a given SMK for
 multiple individual messages, refreshing the SMK on a periodic and/or
 event-driven basis (e.g., when the recipient’s presence changes).
 They might also cache public keys for end recipients, so that wrapped
 keys can be sent along with content on future messages. This implies
 that the JOSE encrypted object format must support the provision of
 multiple versions of the same wrapped SMK (much as a CMS
 EnvelopedData structure can include multiple RecipientInfo
 structures).

 In the current draft of the XMPP end-to-end security system, each
 party is authenticated by virtue of the other party’s trust in the
 XMPP message routing system. The sender is authenticated to the
 receiver because he can receive messages for the identifier "Alice"
 (in particular, the request for wrapped keys) and can originate

Barnes Informational [Page 11]

RFC 7165 JOSE Use Cases April 2014

 messages for that identifier (the wrapped key). Likewise, the
 receiver is authenticated to the sender because he received the
 original encrypted message and originated the request for a wrapped
 key. So, the authentication here requires not only that XMPP routing
 be done properly, but also that TLS be used on every hop. Moreover,
 it requires that the TLS channels have strong authentication, since a
 man in the middle on any of the three hops can masquerade as Bob and
 obtain the key material for an encrypted message.

 Because this authentication is quite weak (depending on the use of
 TLS on three hops) and unverifiable by the endpoints, it is possible
 that the XMPP working group will integrate some sort of credentials
 for end recipients, in which case there would need to be a way to
 associate these credentials with JOSE objects.

 Finally, it’s worth noting that XMPP is based on XML, not JSON. So
 by using JOSE, XMPP will be carrying JSON objects within XML. It is
 thus a desirable property for JOSE objects to be encoded in such a
 way as to be safe for inclusion in XML. Otherwise, an explicit CDATA
 indication must be given to the parser to indicate that it is not to
 be parsed as XML. One way to meet this requirement would be to apply
 base64url encoding, but for XMPP messages of medium-to-large size,
 this could impose a fair degree of overhead.

5.5. ALTO

 Application-Layer Traffic Optimization (ALTO) is a system for
 distributing network topology information to end devices, so that
 those devices can modify their behavior to have a lower impact on the
 network [RFC6708]. The ALTO protocol distributes topology
 information in the form of JSON objects carried in HTTP [RFC2616]
 [ALTO]. The basic version of ALTO is simply a client-server
 protocol, so simple use of HTTPS suffices for this case [RFC2818].
 However, there is beginning to be some discussion of use cases for
 ALTO in which these JSON objects will be distributed through a
 collection of intermediate servers before reaching the client, while
 still preserving the ability of the client to authenticate the
 original source of the object. Even the base ALTO protocol notes
 that "ALTO Clients obtaining ALTO information through redistribution
 must be able to validate the received ALTO information" to ensure
 that it was generated by an appropriate ALTO server.

 In this case, the security requirements are straightforward. JOSE
 objects carrying ALTO payloads will need to bear digital signatures
 from the originating servers, which will be bound to certificates
 attesting to the identities of the servers. There is no requirement
 for confidentiality in this case, since ALTO information is generally
 public.

Barnes Informational [Page 12]

RFC 7165 JOSE Use Cases April 2014

 The more interesting questions are encoding questions. ALTO objects
 are likely to be much larger than payloads in the two cases above,
 with sizes of up to several megabytes. Processing of such large
 objects can be done more quickly if it can be done in a single pass,
 which may be possible if JOSE objects require specific orderings of
 fields within the JSON structure.

 In addition, because ALTO objects are also encoded as JSON, they are
 already safe for inclusion in a JOSE object. Signed JOSE objects
 will likely carry the signed data in a string alongside the
 signature. JSON objects have the property that they can be safely
 encoded in JSON strings. All they require is that unnecessary white
 space be removed, a much simpler transformation than, say, base64url
 encoding. This raises the question of whether it might be possible
 to optimize the JOSE encoding for certain "JSON-safe" cases.

 Finally, it may be desirable for ALTO to have a "detached signature"
 mechanism, that is, a way to encode signature information separate
 from the protected content. This would allow the ALTO protocol to
 include the signature in an HTTPS header, with the signed content as
 the HTTPS entity body.

5.6. Emergency Alerting

 Emergency alerting is an emerging use case for IP networks
 [ALERT-REQ]. Alerting systems allow authorities to warn users of
 impending danger by sending alert messages to connected devices. For
 example, in the event of a hurricane or tornado, alerts might be sent
 to all devices in the path of the storm.

 The most critical security requirement for alerting systems is that
 it must not be possible for an attacker to send false alerts to
 devices. Such a capability would potentially allow an attacker to
 create wide-spread panic. In practice, alert systems prevent these
 attacks both by controls on sending messages at points where alerts
 are originated, and by having recipients of alerts verify that the
 alert was sent by an authorized source. The former type of control
 is implemented with local security on hosts from which alerts can be
 originated. The latter type is implemented by digital signatures on
 alert messages (using channel-based or object-based mechanisms).
 With an object-based mechanism, the signature value is encoded in a
 secure object. With a channel-based mechanism, the alert is "signed"
 by virtue of being sent over an authenticated, integrity-protected
 channel.

Barnes Informational [Page 13]

RFC 7165 JOSE Use Cases April 2014

 Alerts typically reach end recipients via a series of intermediaries.
 For example, while a national weather service might originate a
 hurricane alert, it might first be delivered to a national gateway
 and then to network operators, who broadcast it to end subscribers.

 +------------+ +------------+ +------------+
 | Originator | | Originator | | Originator |
 +------------+ +------------+ +------------+
 | . .
 +-----------------+..................
 |
 V
 +---------+
 | Gateway |
 +---------+
 |
 +------------+------------+
 | |
 V V
 +---------+ +---------+
 | Network | | Network |
 +---------+ +---------+
 | |
 +------+-----+ +------+-----+
 | | | |
 V V V V
 +--------+ +--------+ +--------+ +--------+
 | Device | | Device | | Device | | Device |
 +--------+ +--------+ +--------+ +--------+

 Figure 4: Delivering an Emergency Alert

 In order to verify alert signatures, recipients must be provisioned
 with the proper public keys for trusted alert authorities. This
 trust may be "piece-wise" along the path the alert takes. For
 example, the alert relays operated by networks might have a full set
 of certificates for all alert originators, while end devices may only
 trust their local alert relay. Or, devices might require that a
 device be signed by an authorized originator and by its local
 network’s relay.

 This scenario creates a need for multiple signatures on alert
 documents, so that an alert can bear signatures from any or all of
 the entities that processed it along the path. In order to minimize
 complexity, these signatures should be "modular" in the sense that a
 new signature can be added without a need to alter or recompute
 previous signatures.

Barnes Informational [Page 14]

RFC 7165 JOSE Use Cases April 2014

5.7. Web Cryptography

 The W3C Web Cryptography API defines a standard cryptographic API for
 the Web [WebCrypto]. If a browser exposes this API, then JavaScript
 provided as part of a Web page can ask the browser to perform
 cryptographic operations, such as digest, MAC, encryption, or digital
 signing.

 One of the key reasons to have the browser perform cryptographic
 operations is to avoid allowing JavaScript code to access the keying
 material used for these operations. For example, this separation
 would prevent code injected through a cross-site scripting (XSS)
 attack from reading and exfiltrating keys stored within a browser.
 While the malicious code could still use the key while running in the
 browser, this vulnerability can only be exercised while the malicious
 code is active in a user’s browser.

 However, the Web Cryptography API also provides a key export
 functionality, which can allow JavaScript to extract a key from the
 API in wrapped form. For example, JavaScript code might provide a
 public key for which the corresponding private key is held by another
 device. The wrapped key provided by the API could then be used to
 safely transport the key to the new device. While this could
 potentially allow malicious code to export a key, the need for an
 explicit export operation provides a control point, allowing for user
 notification or consent verification.

 The Web Cryptography API also allows browsers to impose limitations
 on the usage of the keys it handles. For example, a symmetric key
 might be marked as usable only for encryption, and not for MAC. When
 a key is exported in wrapped form, these attributes should be carried
 along with it.

 The Web Cryptography API thus requires formats to express several
 forms of keys. Obviously, the public key from an asymmetric key pair
 can be freely imported to and exported from the browser, so there
 needs to be a format for public keys. There is also a need for a
 format to express private keys and symmetric keys. For non-public
 keys, the primary need is for a wrapped form, where the
 confidentiality and integrity of the key is assured
 cryptographically; these protections should also apply to any
 attributes of the key. It may also be useful to define a direct,
 unwrapped format for use within a security boundary.

Barnes Informational [Page 15]

RFC 7165 JOSE Use Cases April 2014

5.8. Constrained Devices

 This section describes use cases for constrained devices as defined
 in [CONSTRAINED]. Typical issues with this type of device are
 limited memory, limited power supply, low processing power, and
 severe message size limitations for the communication protocols.

5.8.1. Example: MAC Based on ECDH-Derived Key

 Suppose a small, low power device maker has decided on using the
 output of the JOSE working group as their encryption and
 authentication framework. The device maker has a limited budget for
 both gates and power. For this reason there are a number of short
 cuts and design decisions that have been made in order to minimize
 these needs.

 The design team has determined that the use of MACs is going to be
 sufficient to provide the necessary authentication. However,
 although a MAC is going to be used, they do not want to use a single
 long-term shared secret. Instead, they have adopted the following
 proposal for computing a shared secret that can be validated:

 o An Elliptic-Curve Diffie-Hellman (ECDH) key pair is generated for
 the device at the time of manufacturing. (Or, as part of the
 configuration process during installation.)

 o An ECDH public key for the controller is configured at the time of
 configuration.

 o The configuration system performs the ECDH computation and
 configures the device with the resulting shared secret. This
 process eliminates the need for the device to be able to perform
 the required ECDH processing. The security requirements on
 protecting this computed shared secret are the same as the
 requirements on protecting the private ECDH key.

 o A counter and an increment value are configured onto the device.

 o When a message is to be sent by the device, the counter is
 incremented and a new MAC key is computed from the ECDH secret and
 the counter value. A custom Key Derivation Function (KDF) based
 on AES-CBC is used to derive the required MAC key. The MAC key is
 then used to compute the MAC value for the message.

Barnes Informational [Page 16]

RFC 7165 JOSE Use Cases April 2014

 In a similar manner, the KDF function can be used to compute an
 Authenticated Encryption with Associated Data (AEAD) algorithm key
 when the system needs to provide confidentiality for the message.
 The controller, being a larger device, will perform the ECDH step and
 use a random number generator to generate the sender nonce value.

5.8.2. Object Security for CoAP

 This use case deals with constrained devices of class C0/C1 (see
 [CONSTRAINED]). These devices communicate using RESTful requests and
 responses transferred using the Constrained Application Protocol
 [CoAP]. To simplify matters, all communication is assumed to be
 unicast; i.e., these security measures don’t cover multicast or
 broadcast.

 In this type of setting, it may be too costly to use session-based
 security (e.g., to run a 4-pass authentication protocol) since
 receiving and in particular sending consumes a lot of power,
 especially for wireless devices. Therefore, to just secure the CoAP
 payload by replacing a plaintext payload of a request or response
 with a JWE object is an important alternative solution, which allows
 a trade-off between protection (the CoAP headers are not protected)
 and performance.

 In a simple setting, consider the payload of a CoAP GET response from
 a sensor type device. The information in a sensor reading may be
 privacy or business sensitive and needs both integrity protection and
 encryption.

 However, some sensor readings are very short, say, a few bytes, and
 in this case, default encryption and integrity protection algorithms
 (such as 128-bit AES-CBC with HMAC_SHA256) may cause a dramatic
 expansion of the payload, even disregarding JWE headers.

 Also, the value of certain sensor readings may decline rapidly, e.g.,
 traffic or environmental measurements, so it must be possible to
 reduce the security overhead.

 This leads to the following requirements that could be covered by
 specific JWE/JWS profiles:

 o The size of the secure object shall be as small as possible.
 Receiving an object may cost orders of magnitude more in terms of
 power than performing, say, public key cryptography on the object,
 in particular in a wireless setting.

Barnes Informational [Page 17]

RFC 7165 JOSE Use Cases April 2014

 o Integrity protection: The object shall be able to support
 integrity protection, i.e., have a field containing a digital
 signature, both public key signatures and keyed MACs shall be
 supported.

 o Encryption: The object shall be able to support encryption as an
 optional addition to integrity protection. It shall be possible
 to exclude certain fields from encryption, which are needed before
 verifying integrity or decrypting the object.

 o Cipher suites: It should be possible to support a variety of
 cipher suites to support the constrained devices’ use cases. For
 example:

 * Block ciphers with block sizes of, e.g., 96 bits, in addition
 to the standard 128 bits.

 * Modes of operation for block ciphers that do not expand the
 message size to a block boundary, such as AES-GCM.

 * Cipher suites that support combined encryption and MAC
 calculation (i.e., AEAD modes for block ciphers).

6. Requirements

 This section summarizes the requirements from the above use cases and
 lists further requirements not directly derived from the above use
 cases. There are also some constraints that are not hard
 requirements but that are still desirable properties for the JOSE
 system to have.

6.1. Functional Requirements

 F1 Define formats for secure objects that provide the following
 security properties:

 * Digital signature (integrity/authentication under an asymmetric
 key pair)

 * Message authentication (integrity/authentication under a
 symmetric key)

 * Authenticated encryption

 F2 Define a format for public keys and private keys for asymmetric
 cryptographic algorithms, with associated attributes, including a
 wrapped form for private keys.

Barnes Informational [Page 18]

RFC 7165 JOSE Use Cases April 2014

 F3 Define a format for symmetric keys with associated attributes,
 allowing for both wrapped and unwrapped keys.

 F4 Define a JSON serialization for each of the above objects. An
 object in this encoding must be valid according to the JSON ABNF
 syntax [RFC7159].

 F5 Define a compact, URL-safe text serialization for the encrypted
 and signed object formats.

 F6 Allow for attributes associated to wrapped keys to be bound to
 them cryptographically.

 F7 Allow for wrapped keys to be separated from a secure object that
 uses a symmetric key. In such cases, cryptographic components of
 the secure object other than the wrapped key (e.g., ciphertext,
 MAC values) must be independent of the wrapped form of the key.
 For example, if an encrypted object is prepared for multiple
 recipients, then only the wrapped key may vary, not the
 ciphertext.

 F8 Do not impose more overhead than is required to meet the
 requirements in this document, especially when a large amount of
 application content is being protected.

6.2. Security Requirements

 S1 Provide mechanisms to avoid repeated use of the same symmetric key
 for encryption or MAC computation. Instead, long-lived keys
 should be used only for key wrapping, not for direct encryption/
 MAC. It should be possible to use any of the key management
 techniques provided in CMS [RFC5652]:

 * Key transport (wrapping for a public key)

 * Key encipherment (wrapping for a symmetric key)

 * Key agreement (wrapping for a Diffie-Hellman (DH) public key)

 * Password-based encryption (wrapping under a key derived from a
 password)

 S2 Where long-lived symmetric keys are used directly for
 cryptographic operations (i.e., where requirement S1 is not met),
 provide deployment guidance on key management practices, such as
 the need to limit key lifetimes.

Barnes Informational [Page 19]

RFC 7165 JOSE Use Cases April 2014

 S3 Use cryptographic algorithms in a manner compatible with major
 validation processes. For example, if typical validation
 standards allow algorithm A to be used for purpose X but not
 purpose Y, then JOSE should not recommend using algorithm A for
 purpose Y.

 S4 Support operation with or without pre-negotiation. It must be
 possible to create or process secure objects without any
 configuration beyond key provisioning. If it is possible for keys
 to be derived from application context, it must be possible for a
 recipient to recognize when it does not have the appropriate key.

6.3. Desiderata

 D1 Maximize compatibility with the W3C Web Crypto specifications,
 e.g., by coordinating with the Web Crypto working group to
 encourage alignment of algorithms and algorithm identifiers.

 D2 Avoid JSON canonicalization to the extent possible. That is, all
 other things being equal, techniques that rely on fixing a
 serialization of an object (e.g., by encoding it with base64url)
 are preferred over those that require converting an object to a
 canonical form.

 D3 Maximize the extent to which the inputs and outputs of JOSE
 cryptographic operations can be controlled by the applications, as
 opposed to involving processing specific to JOSE. This allows
 JOSE the flexibility to address the needs of many cryptographic
 protocols. For example, in some cases, it might allow JOSE
 objects to be translated to legacy formats such as CMS without the
 need for re-encryption or re-signing.

7. Security Considerations

 The primary focus of this document is the requirements for a JSON-
 based secure object format. At the level of general security
 considerations for object-based security technologies, the security
 considerations for this format are the same as for CMS [RFC5652].
 The primary difference between the JOSE format and CMS is that JOSE
 is based on JSON, which does not have a canonical representation.
 The lack of a canonical form means that it is difficult to determine
 whether two JSON objects represent the same information, which could
 lead to vulnerabilities in some usages of JOSE.

Barnes Informational [Page 20]

RFC 7165 JOSE Use Cases April 2014

8. References

8.1. Normative References

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2", RFC
 4949, August 2007.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [RFC6120] Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 6120, March 2011.

 [RFC6708] Kiesel, S., Previdi, S., Stiemerling, M., Woundy, R., and
 Y. Yang, "Application-Layer Traffic Optimization (ALTO)
 Requirements", RFC 6708, September 2012.

 [RFC6749] Hardt, D., "The OAuth 2.0 Authorization Framework", RFC
 6749, October 2012.

 [RFC7159] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, March 2014.

 [W3C.REC-xml]
 Bray, T., Maler, E., Paoli, J., and C. Sperberg-McQueen,
 "Extensible Markup Language (XML) 1.0 (Fifth Edition)",
 W3C Recommendation, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126/>.

 [WebCrypto]
 Dahl, D. and R. Sleevi, "Web Cryptography API", W3C
 Working Draft, January 2013,
 <http://www.w3.org/TR/2013/WD-WebCryptoAPI-20130108/>.

8.2. Informative References

 [ALERT-REQ]
 Schulzrinne, H., Norreys, S., Rosen, B., and H.
 Tschofenig, "Requirements, Terminology and Framework for
 Exigent Communications", Work in Progress, March 2012.

 [ALTO] Alimi, R., Ed., Penno, R., Ed., and Y. Yang, Ed., "ALTO
 Protocol", Work in Progress, March 2014.

 [CAP] Botterell, A. and E. Jones, "Common Alerting Protocol,
 v1.1", OASIS Standard CAP-V1.1, October 2005,
 <http://www.oasis-open.org/committees/download.php/15135/
 emergency-CAPv1.1-Corrected_DOM.pdf>.

Barnes Informational [Page 21]

RFC 7165 JOSE Use Cases April 2014

 [CONSTRAINED]
 Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained Node Networks", Work in Progress, March 2014.

 [CoAP] Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", Work in Progress, June 2013.

 [ITU.X690.2002]
 International Telecommunications Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, July 2002.

 [JWA] Jones, M., "JSON Web Algorithms (JWA)", Work in Progress,
 March 2014.

 [JWE] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 Work in Progress, March 2014.

 [JWK] Jones, M., "JSON Web Key (JWK)", Work in Progress, March
 2014.

 [JWS] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", Work in Progress, March 2014.

 [JWT-BEARER]
 Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", Work in Progress, March 2014.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", Work in Progress, March 2014.

 [OASIS.saml-core-2.0-os]
 Cantor, S., Kemp, J., Maler, E., and R. Philpott,
 "Assertions and Protocols for the OASIS Security Assertion
 Markup Language (SAML) V2.0", Oasis Standard, March 2005,
 <http://docs.oasis-open.org/security/saml/v2.0/
 saml-core-2.0-os.pdf>.

 [OpenID.Core]
 Bradley, J., de Medeiros, B., Jones, M., Mortimore, C.,
 and N. Sakimura, "OpenID Connect Core 1.0", December 2013,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [Persona] Mozilla Developer Network, "Mozilla Persona", April 2013,
 <https://developer.mozilla.org/en-US/docs/Persona>.

Barnes Informational [Page 22]

RFC 7165 JOSE Use Cases April 2014

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, February 2002.

 [RFC3923] Saint-Andre, P., "End-to-End Signing and Object Encryption
 for the Extensible Messaging and Presence Protocol
 (XMPP)", RFC 3923, October 2004.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, December 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 October 2008.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750, October 2012.

 [SAML2] Campbell, B., Mortimore, C., and M. Jones, "SAML 2.0
 Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", Work in Progress, March 2014.

 [W3C.xmldsig-core]
 Eastlake, D., Reagle, J., and D. Solo, "XML-Signature
 Syntax and Processing", W3C Recommendation, June 2008,
 <http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/>.

 [W3C.xmlenc-core]
 Eastlake, D. and J. Reagle, "XML Encryption Syntax and
 Processing", W3C Candidate Recommendation, December 2002,
 <http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/>.

Barnes Informational [Page 23]

RFC 7165 JOSE Use Cases April 2014

 [WS-Federation]
 Goodner, M., Kaler, C., McIntosh, M., and A. Nadalin, "Web
 Services Federation Language (WS-Federation) Version 1.2",
 Oasis Standard, May 2009, <http://docs.oasis-open.org/
 wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.html>.

 [XMPP-E2E] Miller, M., "End-to-End Object Encryption and Signatures
 for the Extensible Messaging and Presence Protocol
 (XMPP)", Work in Progress, June 2013.

Barnes Informational [Page 24]

RFC 7165 JOSE Use Cases April 2014

Appendix A. Acknowledgements

 Thanks to Matt Miller for discussions related to the XMPP end-to-end
 security model and to Mike Jones for considerations related to
 security tokens and XML security. Thanks to Mark Watson for raising
 the need for representing symmetric keys and binding attributes to
 them. Thanks to Ludwig Seitz for contributing the constrained device
 use case.

Author’s Address

 Richard Barnes
 Mozilla
 331 E. Evelyn Ave.
 Mountain View, CA 94041
 US

 EMail: rlb@ipv.sx

Barnes Informational [Page 25]

