
Internet Engineering Task Force (IETF) I. Baz Castillo
Request for Comments: 7118 J. Millan Villegas
Category: Standards Track Versatica
ISSN: 2070-1721 V. Pascual
 Quobis
 January 2014

 The WebSocket Protocol as a Transport for the
 Session Initiation Protocol (SIP)

Abstract

 The WebSocket protocol enables two-way real-time communication
 between clients and servers in web-based applications. This document
 specifies a WebSocket subprotocol as a reliable transport mechanism
 between Session Initiation Protocol (SIP) entities to enable use of
 SIP in web-oriented deployments.

Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Further information on
 Internet Standards is available in Section 2 of RFC 5741.

 Information about the current status of this document, any errata,
 and how to provide feedback on it may be obtained at
 http://www.rfc-editor.org/info/rfc7118.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Baz Castillo, et al. Standards Track [Page 1]

RFC 7118 WebSocket as a Transport for SIP January 2014

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 2.1. Definitions . 3
 3. The WebSocket Protocol 3
 4. The WebSocket SIP Subprotocol 4
 4.1. Handshake . 4
 4.2. SIP Encoding . 5
 5. SIP WebSocket Transport 6
 5.1. Via Transport Parameter 6
 5.2. SIP URI Transport Parameter 6
 5.3. Via "received" Parameter 7
 5.4. SIP Transport Implementation Requirements 7
 5.5. Locating a SIP Server 8
 6. Connection Keep-Alive . 8
 7. Authentication . 8
 8. Examples . 10
 8.1. Registration . 10
 8.2. INVITE Dialog through a Proxy 12
 9. Security Considerations 16
 9.1. Secure WebSocket Connection 16
 9.2. Usage of "sips" Scheme 16
 10. IANA Considerations . 16
 10.1. Registration of the WebSocket SIP Subprotocol 16
 10.2. Registration of New NAPTR Service Field Values 17
 10.3. SIP/SIPS URI Parameters Subregistry 17
 10.4. Header Fields Subregistry 17
 10.5. Header Field Parameters and Parameter Values Subregistry 17
 10.6. SIP Transport Subregistry 18
 11. Acknowledgements . 18
 12. References . 18
 12.1. Normative References 18
 12.2. Informative References 19
 Appendix A. Authentication Use Cases 21
 A.1. Just SIP Authentication 21
 A.2. Just Web Authentication 21
 A.3. Cookie-Based Authentication 22
 Appendix B. Implementation Guidelines 22
 B.1. SIP WebSocket Client Considerations 23
 B.2. SIP WebSocket Server Considerations 24

Baz Castillo, et al. Standards Track [Page 2]

RFC 7118 WebSocket as a Transport for SIP January 2014

1. Introduction

 The WebSocket protocol [RFC6455] enables message exchange between
 clients and servers on top of a persistent TCP connection (optionally
 secured with Transport Layer Security (TLS) [RFC5246]). The initial
 protocol handshake makes use of HTTP [RFC2616] semantics, allowing
 the WebSocket protocol to reuse existing HTTP infrastructure.

 Modern web browsers include a WebSocket client stack complying with
 the WebSocket API [WS-API] as specified by the W3C. It is expected
 that other client applications (those running in personal computers
 and devices such as smartphones) will also make a WebSocket client
 stack available. The specification in this document enables use of
 SIP in these scenarios.

 This specification defines a WebSocket subprotocol (as defined in
 Section 1.9 of [RFC6455]) for transporting SIP messages between a
 WebSocket client and server, a reliable and message-boundary-
 preserving transport for SIP, and DNS Naming Authority Pointer
 (NAPTR) [RFC3403] service values and procedures for SIP entities
 implementing the WebSocket transport. Media transport is out of the
 scope of this document.

 Section 3 in this specification relaxes the requirement in [RFC3261]
 by which the SIP server transport MUST add a "received" parameter in
 the top Via header in certain circumstances.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2.1. Definitions

 SIP WebSocket Client: A SIP entity capable of opening outbound
 connections to WebSocket servers and communicating using the
 WebSocket SIP subprotocol as defined by this document.

 SIP WebSocket Server: A SIP entity capable of listening for inbound
 connections from WebSocket clients and communicating using the
 WebSocket SIP subprotocol as defined by this document.

3. The WebSocket Protocol

 The WebSocket protocol [RFC6455] is a transport layer on top of TCP
 (optionally secured with TLS [RFC5246]) in which both client and
 server exchange message units in both directions. The protocol

Baz Castillo, et al. Standards Track [Page 3]

RFC 7118 WebSocket as a Transport for SIP January 2014

 defines a connection handshake, WebSocket subprotocol and extensions
 negotiation, a frame format for sending application and control data,
 a masking mechanism, and status codes for indicating disconnection
 causes.

 The WebSocket connection handshake is based on HTTP [RFC2616] and
 utilizes the HTTP GET method with an "Upgrade" request. This is sent
 by the client and then answered by the server (if the negotiation
 succeeded) with an HTTP 101 status code. Once the handshake is
 completed, the connection upgrades from HTTP to the WebSocket
 protocol. This handshake procedure is designed to reuse the existing
 HTTP infrastructure. During the connection handshake, the client and
 server agree on the application protocol to use on top of the
 WebSocket transport. Such an application protocol (also known as a
 "WebSocket subprotocol") defines the format and semantics of the
 messages exchanged by the endpoints. This could be a custom protocol
 or a standardized one (as defined by the WebSocket SIP subprotocol in
 this document). Once the HTTP 101 response is processed, both the
 client and server reuse the underlying TCP connection for sending
 WebSocket messages and control frames to each other. Unlike plain
 HTTP, this connection is persistent and can be used for multiple
 message exchanges.

 WebSocket defines message units to be used by applications for the
 exchange of data, so it provides a message-boundary-preserving
 transport layer. These message units can contain either UTF-8 text
 or binary data and can be split into multiple WebSocket text/binary
 transport frames as needed by the WebSocket stack.

 The WebSocket API [WS-API] for web browsers only defines callbacks
 to be invoked upon receipt of an entire message unit, regardless
 of whether it was received in a single WebSocket frame or split
 across multiple frames.

4. The WebSocket SIP Subprotocol

 The term WebSocket subprotocol refers to an application-level
 protocol layered on top of a WebSocket connection. This document
 specifies the WebSocket SIP subprotocol for carrying SIP requests and
 responses through a WebSocket connection.

4.1. Handshake

 The SIP WebSocket Client and SIP WebSocket Server negotiate usage of
 the WebSocket SIP subprotocol during the WebSocket handshake
 procedure as defined in Section 1.3 of [RFC6455]. The client MUST

Baz Castillo, et al. Standards Track [Page 4]

RFC 7118 WebSocket as a Transport for SIP January 2014

 include the value "sip" in the Sec-WebSocket-Protocol header in its
 handshake request. The 101 reply from the server MUST contain "sip"
 in its corresponding Sec-WebSocket-Protocol header.

 The WebSocket client initiates a WebSocket connection when
 attempting to send a SIP request (unless there is an already
 established WebSocket connection for sending the SIP request). In
 case there is no HTTP 101 response during the WebSocket handshake,
 it is considered a transaction error as per [RFC3261],
 Section 8.1.3.1., "Transaction Layer Errors".

 Below is an example of a WebSocket handshake in which the client
 requests the WebSocket SIP subprotocol support from the server:

 GET / HTTP/1.1
 Host: sip-ws.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: http://www.example.com
 Sec-WebSocket-Protocol: sip
 Sec-WebSocket-Version: 13

 The handshake response from the server accepting the WebSocket SIP
 subprotocol would look as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: sip

 Once the negotiation has been completed, the WebSocket connection is
 established and can be used for the transport of SIP requests and
 responses. Messages other than SIP requests and responses MUST NOT
 be transmitted over this connection.

4.2. SIP Encoding

 WebSocket messages can be transported in either UTF-8 text frames or
 binary frames. SIP [RFC3261] allows both text and binary bodies in
 SIP requests and responses. Therefore, SIP WebSocket Clients and SIP
 WebSocket Servers MUST accept both text and binary frames.

 If there is at least one non-UTF-8 symbol in the whole SIP message
 (including headers and the body), then the whole message MUST be
 sent within a WebSocket binary message. Given the nature of

Baz Castillo, et al. Standards Track [Page 5]

RFC 7118 WebSocket as a Transport for SIP January 2014

 JavaScript and the WebSocket API, it is RECOMMENDED to use UTF-8
 encoding (or ASCII, which is a subset of UTF-8) for SIP messages
 carried over a WebSocket connection.

5. SIP WebSocket Transport

 WebSocket [RFC6455] is a reliable protocol; therefore, the SIP
 WebSocket subprotocol defined by this document is a reliable SIP
 transport. Thus, client and server transactions using WebSocket for
 transport MUST follow the procedures and timer values for reliable
 transports as defined in [RFC3261].

 Each SIP message MUST be carried within a single WebSocket message,
 and a WebSocket message MUST NOT contain more than one SIP message.
 Because the WebSocket transport preserves message boundaries, the use
 of the Content-Length header in SIP messages is not necessary when
 they are transported using the WebSocket subprotocol.

 This simplifies the parsing of SIP messages for both clients and
 servers. There is no need to establish message boundaries using
 Content-Length headers between messages. Other SIP transports,
 such as UDP and the Stream Control Transmission Protocol (SCTP)
 [RFC4168], also provide this benefit.

5.1. Via Transport Parameter

 Via header fields in SIP messages carry a transport protocol
 identifier. This document defines the value "WS" to be used for
 requests over plain WebSocket connections and "WSS" for requests over
 secure WebSocket connections (in which the WebSocket connection is
 established using TLS [RFC5246] with TCP transport).

 The updated augmented BNF (Backus-Naur Form) [RFC5234] for this
 parameter is the following (the original BNF for this parameter can
 be found in [RFC3261], which was then updated by [RFC4168]):

 transport =/ "WS" / "WSS"

5.2. SIP URI Transport Parameter

 This document defines the value "ws" as the transport parameter value
 for a SIP URI [RFC3986] to be contacted using the SIP WebSocket
 subprotocol as transport.

 The updated augmented BNF for this parameter is the following (the
 original BNF for this parameter can be found in [RFC3261]):

 transport-param =/ "transport=" "ws"

Baz Castillo, et al. Standards Track [Page 6]

RFC 7118 WebSocket as a Transport for SIP January 2014

5.3. Via "received" Parameter

 The following is stated in [RFC3261], Section 18.2.1, "Receiving
 Requests":

 When the server transport receives a request over any transport,
 it MUST examine the value of the "sent-by" parameter in the top
 Via header field value. If the host portion of the "sent-by"
 field contains a domain name, or if it contains an IP address that
 differs from the packet source address, the server MUST add a
 "received" parameter to that Via header field value. This
 parameter MUST contain the source address from which the packet
 was received.

 The requirement of adding the "received" parameter does not fit well
 into the WebSocket protocol design. The WebSocket connection
 handshake reuses the existing HTTP infrastructure in which there
 could be an unknown number of HTTP proxies and/or TCP load balancers
 between the SIP WebSocket Client and Server, so the source address
 the server would write into the Via "received" parameter would be the
 address of the HTTP/TCP intermediary in front of it. This could
 reveal sensitive information about the internal topology of the
 server’s network to the client.

 Given the fact that SIP responses can only be sent over the existing
 WebSocket connection, the Via "received" parameter is of little use.
 Therefore, in order to allow hiding possible sensitive information
 about the SIP WebSocket Server’s network, this document updates
 [RFC3261], Section 18.2.1 by stating:

 When a SIP WebSocket Server receives a request, it MAY decide not
 to add a "received" parameter to the top Via header. Therefore,
 SIP WebSocket Clients MUST accept responses without such a
 parameter in the top Via header regardless of whether the Via
 "sent-by" field contains a domain name.

5.4. SIP Transport Implementation Requirements

 The following is stated in [RFC3261], Section 18, "Transport":

 All SIP elements MUST implement UDP and TCP. SIP elements MAY
 implement other protocols.

 The specification of this transport enables SIP to be used as a
 session establishment protocol in scenarios where none of the other
 transport protocols defined for SIP can be used. Since some

Baz Castillo, et al. Standards Track [Page 7]

RFC 7118 WebSocket as a Transport for SIP January 2014

 environments do not enable SIP elements to use UDP and TCP as SIP
 transport protocols, a SIP element acting as a SIP WebSocket Client
 is not mandated to implement support of UDP and TCP.

5.5. Locating a SIP Server

 [RFC3263] specifies the procedures that should be followed by SIP
 entities for locating SIP servers. This specification defines the
 NAPTR service value "SIP+D2W" for SIP WebSocket Servers that support
 plain WebSocket connections and "SIPS+D2W" for SIP WebSocket Servers
 that support secure WebSocket connections.

 At the time this document was written, DNS NAPTR/Service Record
 (SRV) queries could not be performed by commonly available
 WebSocket client stacks (in JavaScript engines and web browsers).

 In the absence of DNS SRV resource records or an explicit port, the
 default port for a SIP URI using the "sip" scheme and the "ws"
 transport parameter is 80, and the default port for a SIP URI using
 the "sips" scheme and the "ws" transport parameter is 443.

6. Connection Keep-Alive

 SIP WebSocket Clients and Servers may keep their WebSocket
 connections open by sending periodic WebSocket "Ping" frames as
 described in [RFC6455], Section 5.5.2.

 The WebSocket API [WS-API] does not provide a mechanism for
 applications running in a web browser to control whether or not
 periodic WebSocket "Ping" frames are sent to the server. The
 implementation of such a keep-alive feature is the decision of
 each web browser manufacturer and may also depend on the
 configuration of the web browser.

 The indication and use of the CRLF NAT keep-alive mechanism defined
 for SIP connection-oriented transports in [RFC5626], Section 3.5.1 or
 [RFC6223] are, of course, usable over the transport defined in this
 specification.

7. Authentication

 This section describes how authentication is achieved through the
 requirements in [RFC6455], [RFC6265], [RFC2617], and [RFC3261].

 The WebSocket protocol [RFC6455] does not define an authentication
 mechanism; instead, it exposes the following text in Section 10.5,
 "WebSocket Client Authentication":

Baz Castillo, et al. Standards Track [Page 8]

RFC 7118 WebSocket as a Transport for SIP January 2014

 This protocol doesn’t prescribe any particular way that servers
 can authenticate clients during the WebSocket handshake. The
 WebSocket server can use any client authentication mechanism
 available to a generic HTTP server, such as cookies, HTTP
 authentication, or TLS authentication.

 The following list exposes mandatory-to-implement and optional
 mechanisms for SIP WebSocket Clients and Servers in order to get
 interoperability at the WebSocket authentication level:

 o A SIP WebSocket Client MUST be ready to add a session cookie when
 it runs in a web browser (or behaves like a browser navigating a
 website) and has previously retrieved a session cookie from the
 web server whose URL domain matches the domain in the WebSocket
 URI. This mechanism is defined by [RFC6265].

 o A SIP WebSocket Client MUST be ready to be challenged with an HTTP
 401 status code [RFC2617] by the SIP WebSocket Server when
 performing the WebSocket handshake.

 o A SIP WebSocket Client MAY use TLS client authentication (when in
 a secure WebSocket connection) as an optional authentication
 mechanism.

 Note, however, that TLS client authentication in the WebSocket
 protocol is governed by the rules of the HTTP protocol rather
 than the rules of SIP.

 o A SIP WebSocket Server MUST be ready to read session cookies when
 present in the WebSocket handshake request and use such a cookie
 value for determining whether the WebSocket connection has been
 initiated by an HTTP client navigating a website in the same
 domain (or subdomain) as the SIP WebSocket Server.

 o A SIP WebSocket Server SHOULD be able to reject a WebSocket
 handshake request with an HTTP 401 status code by providing a
 Basic/Digest challenge as defined for the HTTP protocol.

 Regardless of whether or not the SIP WebSocket Server requires
 authentication during the WebSocket handshake, authentication MAY be
 requested at the SIP level.

 Some authentication use cases are exposed in Appendix A.

Baz Castillo, et al. Standards Track [Page 9]

RFC 7118 WebSocket as a Transport for SIP January 2014

8. Examples

8.1. Registration

 Alice (SIP WSS) proxy.example.com
 | |
 |HTTP GET (WS handshake) F1 |
 |---------------------------->|
 |101 Switching Protocols F2 |
 |<----------------------------|
 | |
 |REGISTER F3 |
 |---------------------------->|
 |200 OK F4 |
 |<----------------------------|
 | |

 Alice loads a web page using her web browser and retrieves JavaScript
 code implementing the WebSocket SIP subprotocol defined in this
 document. The JavaScript code (a SIP WebSocket Client) establishes a
 secure WebSocket connection with a SIP proxy/registrar (a SIP
 WebSocket Server) at proxy.example.com. Upon WebSocket connection,
 Alice constructs and sends a SIP REGISTER request, including Outbound
 [RFC5626] and Globally Routable User Agent URI (GRUU) [RFC5627]
 support. Since the JavaScript stack in a browser has no way to
 determine the local address from which the WebSocket connection was
 made, this implementation uses a random ".invalid" domain name for
 the Via header "sent-by" parameter and for the hostport of the URI in
 the Contact header (see Appendix B.1).

 Message details (authentication and Session Description Protocol
 (SDP) bodies are omitted for simplicity):

 F1 HTTP GET (WS handshake) Alice -> proxy.example.com (TLS)

 GET / HTTP/1.1
 Host: proxy.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Origin: https://www.example.com
 Sec-WebSocket-Protocol: sip
 Sec-WebSocket-Version: 13

Baz Castillo, et al. Standards Track [Page 10]

RFC 7118 WebSocket as a Transport for SIP January 2014

 F2 101 Switching Protocols proxy.example.com -> Alice (TLS)

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: sip

 F3 REGISTER Alice -> proxy.example.com (transport WSS)

 REGISTER sip:proxy.example.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@example.com;tag=65bnmj.34asd
 To: sip:alice@example.com
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"

 F4 200 OK proxy.example.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKasudf
 From: sip:alice@example.com;tag=65bnmj.34asd
 To: sip:alice@example.com;tag=12isjljn8
 Call-ID: aiuy7k9njasd
 CSeq: 1 REGISTER
 Supported: outbound, gruu
 Contact: <sip:alice@df7jal23ls0d.invalid;transport=ws>
 ;reg-id=1
 ;+sip.instance="<urn:uuid:f81-7dec-14a06cf1>"
 ;pub-gruu="sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1"
 ;temp-gruu="sip:87ash54=3dd.98a@example.com;gr"
 ;expires=3600

Baz Castillo, et al. Standards Track [Page 11]

RFC 7118 WebSocket as a Transport for SIP January 2014

8.2. INVITE Dialog through a Proxy

 Alice (SIP WSS) proxy.example.com (SIP UDP) Bob
INVITE F1	
---------------------------->	
100 Trying F2	
<----------------------------	
	INVITE F3
	---------------------------->
	200 OK F4
	<----------------------------
200 OK F5	
<----------------------------	
ACK F6	
---------------------------->	
	ACK F7
	---------------------------->
Bidirectional RTP Media	
<===>	
	BYE F8
	<----------------------------
BYE F9	
<----------------------------	
200 OK F10	
---------------------------->	
	200 OK F11
	---------------------------->

 In the same scenario, Alice places a call to Bob’s Address of Record
 (AOR). The SIP WebSocket Server at proxy.example.com acts as a SIP
 proxy, routing the INVITE to Bob’s contact address (which happens to
 be using SIP transported over UDP). Bob answers the call and then
 terminates it.

 Message details (authentication and SDP bodies are omitted for
 simplicity):

Baz Castillo, et al. Standards Track [Page 12]

RFC 7118 WebSocket as a Transport for SIP January 2014

 F1 INVITE Alice -> proxy.example.com (transport WSS)

 INVITE sip:bob@example.com SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 70
 Supported: path, outbound, gruu
 Route: <sip:proxy.example.com:443;transport=ws;lr>
 Contact: <sip:alice@example.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
 Content-Type: application/sdp

 F2 100 Trying proxy.example.com -> Alice (transport WSS)

 SIP/2.0 100 Trying
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE

 F3 INVITE proxy.example.com -> Bob (transport UDP)

 INVITE sip:bob@203.0.113.22:5060 SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Max-Forwards: 69
 Supported: path, outbound, gruu
 Contact: <sip:alice@example.com
 ;gr=urn:uuid:f81-7dec-14a06cf1;ob>
 Content-Type: application/sdp

Baz Castillo, et al. Standards Track [Page 13]

RFC 7118 WebSocket as a Transport for SIP January 2014

 F4 200 OK Bob -> proxy.example.com (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhjhjqw32c
 ;received=192.0.2.10
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F5 200 OK proxy.example.com -> Alice (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bK56sdasks
 Record-Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 INVITE
 Contact: <sip:bob@203.0.113.22:5060;transport=udp>
 Content-Type: application/sdp

 F6 ACK Alice -> proxy.example.com (transport WSS)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 Route: <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>,
 <sip:proxy.example.com;transport=udp;lr>,
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 70

Baz Castillo, et al. Standards Track [Page 14]

RFC 7118 WebSocket as a Transport for SIP January 2014

 F7 ACK proxy.example.com -> Bob (transport UDP)

 ACK sip:bob@203.0.113.22:5060;transport=udp SIP/2.0
 Via: SIP/2.0/UDP proxy.example.com;branch=z9hG4bKhwpoc80zzx
 Via: SIP/2.0/WSS df7jal23ls0d.invalid;branch=z9hG4bKhgqqp090
 From: sip:alice@example.com;tag=asdyka899
 To: sip:bob@example.com;tag=bmqkjhsd
 Call-ID: asidkj3ss
 CSeq: 1 ACK
 Max-Forwards: 69

 F8 BYE Bob -> proxy.example.com (transport UDP)

 BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 Route: <sip:proxy.example.com;transport=udp;lr>,
 <sip:h7kjh12s@proxy.example.com:443;transport=ws;lr>
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 70

 F9 BYE proxy.example.com -> Alice (transport WSS)

 BYE sip:alice@example.com;gr=urn:uuid:f81-7dec-14a06cf1;ob SIP/2.0
 Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE
 Max-Forwards: 69

 F10 200 OK Alice -> proxy.example.com (transport WSS)

 SIP/2.0 200 OK
 Via: SIP/2.0/WSS proxy.example.com:443;branch=z9hG4bKmma01m3r5
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

Baz Castillo, et al. Standards Track [Page 15]

RFC 7118 WebSocket as a Transport for SIP January 2014

 F11 200 OK proxy.example.com -> Bob (transport UDP)

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP 203.0.113.22;branch=z9hG4bKbiuiansd001
 From: sip:bob@example.com;tag=bmqkjhsd
 To: sip:alice@example.com;tag=asdyka899
 Call-ID: asidkj3ss
 CSeq: 1201 BYE

9. Security Considerations

9.1. Secure WebSocket Connection

 It is RECOMMENDED that the SIP traffic transported over a WebSocket
 communication be protected by using a secure WebSocket connection
 (using TLS [RFC5246] over TCP).

 When establishing a connection using SIP over secure WebSocket
 transport, the client MUST authenticate the server using the server’s
 certificate according to the WebSocket validation procedure in
 [RFC6455].

 Server operators should note that this authentication procedure is
 different from the procedure for SIP domain certificates defined
 in [RFC5922]. Certificates that are appropriate for SIP over TLS
 over TCP will probably not be appropriate for SIP over secure
 WebSocket connections.

9.2. Usage of "sips" Scheme

 The "sips" scheme in a SIP URI dictates that the entire request path
 to the target be secure. If such a path includes a WebSocket
 connection, it MUST be a secure WebSocket connection.

10. IANA Considerations

10.1. Registration of the WebSocket SIP Subprotocol

 IANA has registered the WebSocket SIP subprotocol under the
 "WebSocket Subprotocol Name" registry with the following data:

 Subprotocol Identifier: sip

 Subprotocol Common Name: WebSocket Transport for SIP (Session
 Initiation Protocol)

 Subprotocol Definition: [RFC7118]

Baz Castillo, et al. Standards Track [Page 16]

RFC 7118 WebSocket as a Transport for SIP January 2014

10.2. Registration of New NAPTR Service Field Values

 This document defines two new NAPTR service field values (SIP+D2W and
 SIPS+D2W) and IANA has registered these values under the "Registry
 for the Session Initiation Protocol (SIP) NAPTR Resource Record
 Services Field". The entries are as follows:

 Services Field Protocol Reference
 -------------- -------- ---------
 SIP+D2W WS [RFC7118]
 SIPS+D2W WS [RFC7118]

10.3. SIP/SIPS URI Parameters Subregistry

 IANA has added a reference to this document under the "SIP/SIPS URI
 Parameters" subregistry within the "Session Initiation Protocol (SIP)
 Parameters" registry:

 Parameter Name Predefined Values Reference
 -------------- ----------------- ---------
 transport Yes [RFC3261][RFC7118]

10.4. Header Fields Subregistry

 IANA has added a reference to this document under the "Header Fields"
 subregistry within the "Session Initiation Protocol (SIP) Parameters"
 registry:

 Header Name compact Reference
 ----------- ------- ---------
 Via v [RFC3261][RFC7118]

10.5. Header Field Parameters and Parameter Values Subregistry

 IANA has added a reference to this document under the "Header Field
 Parameters and Parameter Values" subregistry within the "Session
 Initiation Protocol (SIP) Parameters" registry:

 Predefined
 Header Field Parameter Name Values Reference
 ------------ -------------- ------ ---------
 Via received No [RFC3261][RFC7118]

Baz Castillo, et al. Standards Track [Page 17]

RFC 7118 WebSocket as a Transport for SIP January 2014

10.6. SIP Transport Subregistry

 This document adds a new subregistry, "SIP Transport", to the
 "Session Initiation Protocol (SIP) Parameters" registry. Its format
 and initial values are as shown in the following table:

 +------------+------------------------+
 | Transport | Reference |
 +------------+------------------------+
UDP	[RFC3261]
TCP	[RFC3261]
TLS	[RFC3261]
SCTP	[RFC3261], [RFC4168]
TLS-SCTP	[RFC4168]
WS	[RFC7118]
WSS	[RFC7118]
 +------------+------------------------+

 The policy for registration of values in this registry is "Standards
 Action" [RFC5226].

11. Acknowledgements

 Special thanks to the following people who participated in
 discussions on the SIPCORE and RTCWEB WG mailing lists and
 contributed ideas and/or provided detailed reviews (the list is
 likely to be incomplete): Hadriel Kaplan, Paul Kyzivat, Robert
 Sparks, Adam Roach, Ranjit Avasarala, Xavier Marjou, Nataraju A. B.,
 Martin Vopatek, Alexey Melnikov, Alan Johnston, Christer Holmberg,
 Salvatore Loreto, Kevin P. Fleming, Suresh Krishnan, Yaron Sheffer,
 Richard Barnes, Barry Leiba, Stephen Farrell, Ted Lemon, Benoit
 Claise, Pete Resnick, Binod P.G., and Saul Ibarra Corretge.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",
 RFC 2617, June 1999.

Baz Castillo, et al. Standards Track [Page 18]

RFC 7118 WebSocket as a Transport for SIP January 2014

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3263] Rosenberg, J. and H. Schulzrinne, "Session Initiation
 Protocol (SIP): Locating SIP Servers", RFC 3263, June
 2002.

 [RFC3403] Mealling, M., "Dynamic Delegation Discovery System (DDDS)
 Part Three: The Domain Name System (DNS) Database", RFC
 3403, October 2002.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
 6455, December 2011.

12.2. Informative References

 [RFC2606] Eastlake, D. and A. Panitz, "Reserved Top Level DNS
 Names", BCP 32, RFC 2606, June 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3327] Willis, D. and B. Hoeneisen, "Session Initiation Protocol
 (SIP) Extension Header Field for Registering Non-Adjacent
 Contacts", RFC 3327, December 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

Baz Castillo, et al. Standards Track [Page 19]

RFC 7118 WebSocket as a Transport for SIP January 2014

 [RFC4168] Rosenberg, J., Schulzrinne, H., and G. Camarillo, "The
 Stream Control Transmission Protocol (SCTP) as a Transport
 for the Session Initiation Protocol (SIP)", RFC 4168,
 October 2005.

 [RFC5626] Jennings, C., Mahy, R., and F. Audet, "Managing Client-
 Initiated Connections in the Session Initiation Protocol
 (SIP)", RFC 5626, October 2009.

 [RFC5627] Rosenberg, J., "Obtaining and Using Globally Routable User
 Agent URIs (GRUUs) in the Session Initiation Protocol
 (SIP)", RFC 5627, October 2009.

 [RFC5922] Gurbani, V., Lawrence, S., and A. Jeffrey, "Domain
 Certificates in the Session Initiation Protocol (SIP)",
 RFC 5922, June 2010.

 [RFC6223] Holmberg, C., "Indication of Support for Keep-Alive", RFC
 6223, April 2011.

 [WS-API] W3C and I. Hickson, Ed., "The WebSocket API", September
 2012.

Baz Castillo, et al. Standards Track [Page 20]

RFC 7118 WebSocket as a Transport for SIP January 2014

Appendix A. Authentication Use Cases

 The sections below briefly describe some SIP over WebSocket scenarios
 in which authentication takes place in different ways.

A.1. Just SIP Authentication

 SIP Private Branch Exchange (PBX) model A implements the SIP
 WebSocket transport defined by this specification. Its
 implementation is 100% website agnostic as it does not share
 information with the web server providing the HTML code to browsers,
 meaning that the SIP WebSocket Server (here, PBX model A) has no
 knowledge about web login activity within the website.

 In this simple scenario, the SIP WebSocket Server does not inspect
 fields in the WebSocket handshake HTTP GET request such as the
 request URL, the Origin header value, the Host header value, or the
 Cookie header value (if present). However, some of those fields
 could be inspected for a minimal validation (i.e., PBX model A could
 require that the Origin header value contains a specific URL so just
 users navigating such a website would be able to establish a
 WebSocket connection with PBX model A).

 Once the WebSocket connection has been established, SIP
 authentication is requested by PBX model A for each SIP request
 coming over that connection. Therefore, SIP WebSocket Clients must
 be provisioned with their corresponding SIP password.

A.2. Just Web Authentication

 A SIP-to-PSTN (Public Switched Telephone Network) provider offers
 telephony service for clients logged into its website. The provider
 does not want to expose SIP passwords into the web for security/
 privacy reasons.

 Once the user is logged into the web, the web server provides him
 with a SIP identity (SIP URI) and a session temporary token string
 (along with the SIP WebSocket Client JavaScript application and SIP
 settings). The web server stores the SIP identity and session token
 into a database.

 The web application adds the SIP identity and session token as URL
 query parameters in the WebSocket handshake request and attempts the
 connection. The SIP WebSocket Server inspects the handshake request
 and validates that the session token matches the value stored in the
 database for the given SIP identity. In case the value matches, the
 WebSocket connection gets "authenticated" for that SIP identity. The
 SIP WebSocket Client can then register and make calls. The SIP

Baz Castillo, et al. Standards Track [Page 21]

RFC 7118 WebSocket as a Transport for SIP January 2014

 WebSocket Server would, however, verify that the identity in those
 SIP requests (i.e., the From URI value) matches the SIP identity the
 WebSocket connection is associated to (otherwise, the SIP request is
 rejected).

 When the user performs a logout action in the web, the web server
 removes the SIP identity and session token tuple from the database
 and notifies the SIP WebSocket Server, which revokes and closes the
 WebSocket connection.

 No SIP authentication takes place in this scenario.

A.3. Cookie-Based Authentication

 The Apache web server comes with a new module: mod_sip_websocket. In
 port 80, the web server is configured to listen for both HTTP common
 requests and WebSocket handshake requests. Therefore, both the web
 server and the SIP WebSocket Server are co-located within the same
 host and same domain.

 Once the user is logged into the web, he is provided with the SIP
 WebSocket Client JavaScript application and SIP settings. The HTTP
 200 response after the login procedure also contains a session cookie
 [RFC6265]. The web application then attempts a WebSocket connection
 against the same URL/domain of the website, and thus the session
 cookie is automatically added by the browser into the WebSocket
 handshake request (as the WebSocket protocol [RFC6455] states).

 The web server inspects the cookie value (as it would do for a common
 HTTP request containing a session cookie so that the login procedure
 is not required again). If the cookie is valid, the WebSocket
 connection is authorized. And, as in the previous use case, the
 connection is also associated with a specific SIP identity that must
 be satisfied by every SIP request coming over that connection.

 No SIP authentication takes place in this scenario but just common
 cookie usage as widely deployed in the World Wide Web.

Appendix B. Implementation Guidelines

 Let us assume a scenario in which the users access with their web
 browsers (probably behind NAT) an application provided by a server on
 an intranet, login by entering their user identifier and credentials,
 and retrieve a JavaScript application (along with the HTML)
 implementing a SIP WebSocket Client.

Baz Castillo, et al. Standards Track [Page 22]

RFC 7118 WebSocket as a Transport for SIP January 2014

 Such a SIP stack connects to a given SIP WebSocket Server (an
 outbound SIP proxy that also implements classic SIP transports such
 as UDP and TCP). The HTTP GET method request sent by the web browser
 for the WebSocket handshake includes a Cookie [RFC6265] header with
 the value previously provided by the server after the successful
 login procedure. The cookie value is then inspected by the WebSocket
 server to authorize the connection. Once the WebSocket connection is
 established, the SIP WebSocket Client performs a SIP registration to
 a SIP registrar server that is reachable through the proxy. After
 registration, the SIP WebSocket Client and Server exchange SIP
 messages as would normally be expected.

 This scenario is quite similar to ones in which SIP user agents (UAs)
 behind NATs connect to a proxy and must reuse the same TCP connection
 for incoming requests (because they are not directly reachable by the
 proxy otherwise). In both cases, the SIP UAs are only reachable
 through the proxy to which they are connected.

 The SIP Outbound extension [RFC5626] seems an appropriate solution
 for this scenario. Therefore, these SIP WebSocket Clients and the
 SIP registrar implement both the Outbound and Path [RFC3327]
 extensions, and the SIP proxy acts as an Outbound Edge Proxy (as
 defined in [RFC5626], Section 3.4).

 SIP WebSocket Clients in this scenario receive incoming SIP requests
 via the SIP WebSocket Server to which they are connected. Therefore,
 in some call transfer cases, the use of GRUU [RFC5627] (which should
 be implemented in both the SIP WebSocket Clients and SIP registrar)
 is valuable.

 If a REFER request is sent to a third SIP user agent including the
 Contact URI of a SIP WebSocket Client as the target in its
 Refer-To header field, such a URI will be reachable by the third
 SIP UA only if it is a globally routable URI. GRUU (Globally
 Routable User Agent URI) is a solution for those scenarios and
 would cause the incoming request from the third SIP user agent to
 be sent to the SIP registrar, which would route the request to the
 SIP WebSocket Client via the Outbound Edge Proxy.

B.1. SIP WebSocket Client Considerations

 The JavaScript stack in web browsers does not have the ability to
 discover the local transport address used for originating WebSocket
 connections. A SIP WebSocket Client running in such an environment
 can construct a domain name consisting of a random token followed by
 the ".invalid" top-level domain name, as stated in [RFC2606], and
 uses it within its Via and Contact headers.

Baz Castillo, et al. Standards Track [Page 23]

RFC 7118 WebSocket as a Transport for SIP January 2014

 The Contact URI provided by SIP UAs requesting (and receiving)
 Outbound support is not used for routing requests to those UAs,
 thus it is safe to set a random domain in the Contact URI
 hostport.

 Both the Outbound and GRUU specifications require a SIP UA to include
 a Uniform Resource Name (URN) in a "+sip.instance" parameter of the
 Contact header in which they include their SIP REGISTER requests.
 The client device is responsible for generating or collecting a
 suitable value for this purpose.

 In web browsers, it is difficult to generate or collect a suitable
 value to be used as an URN value from the browser itself. This
 scenario suggests that value is generated according to [RFC5626],
 Section 4.1 by the web application running in the browser the
 first time it loads the JavaScript SIP stack code, and then it is
 stored as a cookie within the browser.

B.2. SIP WebSocket Server Considerations

 The SIP WebSocket Server in this scenario behaves as a SIP Outbound
 Edge Proxy, which involves support for Outbound [RFC5626] and Path
 [RFC3327].

 The proxy performs loose routing and remains in the path of dialogs
 as specified in [RFC3261]. If it did not do this, in-dialog requests
 would fail since SIP WebSocket Clients make use of their SIP
 WebSocket Server in order to send and receive SIP messages.

Baz Castillo, et al. Standards Track [Page 24]

RFC 7118 WebSocket as a Transport for SIP January 2014

Authors’ Addresses

 Inaki Baz Castillo
 Versatica
 Barakaldo, Basque Country
 Spain

 EMail: ibc@aliax.net

 Jose Luis Millan Villegas
 Versatica
 Bilbao, Basque Country
 Spain

 EMail: jmillan@aliax.net

 Victor Pascual
 Quobis
 Spain

 EMail: victor.pascual@quobis.com

Baz Castillo, et al. Standards Track [Page 25]

