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1.  Introduction

   If you are working to develop methods of communications within a
   computer network, you can engage in one of two activities.  You can
   work with others, actually constructing a computer network, being
   influenced, perhaps influencing your colleagues.  Or you can
   construct an intellectual position of how things should be done in an
   ideal network, one better than the one you are helping to construct,
   and then present this position for the designers of future networks
   to study.  The author has spent the past two years engaged in the
   first activity.  This paper results from recent engagement in the
   second activity.

   "A resource sharing computer network is defined to be a set of
   autonomous, independent computer systems, interconnected so as to
   permit each computer system to utilize all of the resources of the
   other computer systems much as it would normally call a subroutine."
   This definition of a network and the desirability of such a network
   is expounded upon by Roberts and Wessler in [9].

   The actual act of resource sharing can be performed in two ways:  in
   an ad hoc manner between all pairs of computer systems in the
   network; or according to a systematic network-wide standard.  This
   paper develops one possible network-wide system for resource sharing.

   I believe it is natural to think of resources as being associated
   with processes<1> and available only through communication with these
   processes.  Therefore, I view the fundamental problem of resource
   sharing to be the problem of interprocess communication.  I also
   share with Carr, Crocker, and Cerf [2] the view that interprocess
   communication over a network is a subcase of general interprocess
   communication in a multi-programmed environment.

   These views have led me to perform a two-part study.  First, a set of
   operations enabling interprocess communication within a single time-
   sharing system is constructed.  This set of operations eschews many
   of the interprocess communications techniques currently in use within
   time-sharing systems -- such as communication through shared memory
   -- and relies instead on techniques that can be easily generalized to
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   permit communication between remote processes.  The second part of
   the study presents such a generalization.  The application of this
   generalized system to the ARPA Computer Network [9] is also
   discussed.

   The ideas enlarged upon in this paper came from many sources.
   Particularly influential were -- 1) an early sketch of a Host
   protocol for the ARPA Network by S. Crocker of UCLA and W. Crowther
   of Bolt Beranek and Newman Inc. (BBN); 2) Ackerman and Plummer’s
   paper on the MIT PDP-1 time-sharing system [1]; and 3) discussions
   with W. Crowther and R. Kahn of BBN about Host protocol, flow
   control, and message routing for the ARPA Network.  Hopefully, there
   are also some original ideas in this note.  I alone am responsible
   for the collection of all of these ideas into the system described
   herein, and I am therefore responsible for any inconsistencies or
   bugs in the system.

   It must be emphasized that this paper does not represent an official
   BBN position on Host protocol for the ARPA Computer Network.

2.  A System for Interprocess Communication within a Time-Sharing System

   This section describes a set of operations enabling interprocess
   communication within a time-sharing system.  Following the notation
   of [10], I call this interprocess communication facility an IPC.  As
   an aid to the presentation of this IPC, a model for a time-sharing
   system is described; this model is then used to illustrate the use of
   the interprocess communication operations.

   The model time-sharing has two pieces: the monitor and the processes.
   The monitor performs such functions as switching control from one
   process to another process when a process has used "enough" time,
   fielding hardware interrupts, managing core and the swapping medium,
   controlling the passing of control from one process to another (i.e.,
   protection mechanisms), creating processes,caring for sleeping
   processes, and providing to the processes a set of machine extending
   operations (often called Supervisor or Monitor Calls).  The processes
   perform the normal user functions (user processes) as well as the
   functions usually thought of as being supervisor functions in a
   time-sharing system (systems processes) but not performed by the
   monitor in the current model.  A typical system process is the disc
   handler or the file system.  System processes is the disc handler or
   the file system.  System processes are probably allowed to execute in
   supervisor mode, and they actually execute I/O instructions and
   perform other privileged operations that user processes are not
   allowed to perform.  In all other ways, user and system processes are
   identical.  For reasons of efficiency, it may be useful to think of
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   system processes as being locked in core.

   Although they will be of concern later in this study, protection
   considerations are not my concern here: instead I will assume that
   all of the processes are "good" processes which never made any
   mistakes.  If the reader needs a protection structure to keep in mind
   while he reads this note, the capability system developed in
   [1][3][7][8] should be satisfying.

   Of the operations a process can call on the monitor to perform, six
   are of particular interest for providing a capability for
   interprocess communication.

   RECEIVE. This operation allows a specified process to send a message
   to the process executing the RECEIVE. The operation has four
   parameters: the port (defined below) awaiting the message -- the
   RECEIVE port; the port a message will be accepted from -- the SEND
   port; a specification of the buffer available to receive the message;
   and a location to transfer to when the transmission is complete --
   the restart location.

   SEND.  This operation sends a message from the process executing the
   SEND to a specified process.  It has four parameters: a port to send
   the message to -- the RECEIVE port; the port the message is being
   sent from -- the SEND port; a specification of the buffer containing
   the message to be sent; and the restart location.

   RECEIVE ANY.  This operations allows any process to send a message to
   the process executing the RECEIVE ANY.  The operation has four
   parameters: the port awaiting the message -- the RECEIVE port; a
   specification of the buffer available to receive the message; a
   restart location; and a location where the port which sent the
   message may be noted.

   SEND FROM ANY.  This operation allows a process to send a message to
   a process able to receive a message from any process.  It has the
   same four parameters as SEND.  (The necessity for this operation will
   be explained much later).

   SLEEP.  This operation allows the currently running process to put
   itself to sleep pending the completion of an event.  The operation
   has one optional parameter, an event to be waited for.  An example
   event is the arrival of a hardware interrupt.  The monitor never
   unilaterally puts a process to sleep as a result of the process
   executing one of the above four operations; however, if a process is
   asleep when one of the above four operations is satisfied, the
   process is awakened.
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   UNIQUE.  This operation obtains a unique number from the monitor.

   A port is a particular data path to a process (a RECEIVE port) or
   from a process (a SEND port), and all ports have an associated unique
   port number which is used to identify the port.  Ports are used in
   transmitting messages from one process to another in the following
   manner.  Consider two processes, A and B, that wish to communicate.
   Process A executes a RECEIVE to port N from port M.  Process B
   executes a SEND to port N from port M.  The monitor matches up the
   port numbers and transfers the message from process B to process A.
   As soon as the buffer has been fully transmitted out of process B,
   process B is restarted at the location specified in the SEND
   operation.  As soon as the message is fully received at process A,
   process A is restarted at the location specified in the RECEIVE
   operation.  Just how the processes come by the correct port numbers
   with which to communicate with other processes is not the concern of
   the monitor -- this problem is left to the processes.

   When a SEND is executed, nothing happens until a matching RECEIVE is
   executed.  Somewhere in the monitor there must be a table of port
   numbers associated with processes and restart locations.  The table
   entries are cleared after each SEND/RECEIVE match is made.  If a
   proper RECEIVE is not executed for some time, the SEND is timed out
   after a while and the SENDing process is notified.  If a RECEIVE is
   executed but the matching SEND does not happen for a long time, the
   RECEIVE is timed out and the RECEIVing process is notified.

   The mechanism of timing out "unused" table entries is of little
   fundamental importance, merely providing a convenient method of
   garbage collecting the table.  There is no problem if an entry is
   timed out prematurely, because the process can always re-execute the
   operation.  However, the timeout interval should be long enough so
   that continual re-execution of an operation will cause little
   overhead.

   A RECEIVE ANY never times out, but may be taken back using a
   supervisor call.  A message resultant from a SEND FROM ANY is always
   sent immediately and will be discarded if a proper receiver does not
   exist.  An error message is not returned and acknowledgment, if any,
   is up to the processes.  If the table where the SEND and RECEIVE are
   matched up ever overflows, a process originating a further SEND and
   RECEIVE is notified just as if the SEND or RECEIVE timed out.

   The restart location is an interrupt entrance associated with a
   pseudo interrupt local to the process executing the operation
   specifying the restart location.  If the process is running when then
   event causing the pseudo interrupt occurs (for example, a message
   arrives satisfying a pending RECEIVE), the effect is exactly as if
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   the hardware interrupted the process and transferred control to the
   restart location.  Enough information is saved for the process to
   continue execution at the point it was interrupted after the
   interrupt is serviced.  If the process is asleep, it is readied and
   the pseudo interrupt is saved until the process runs again and the
   interrupt is then allowed.  Any RECEIVE or RECEIVE ANY message port
   may thus be used to provide process interrupts, event channels,
   process synchronization, message transfers, etc.  The user programs
   what he wants.

   It is left as an exercise to the reader to convince himself that the
   monitor he is saddled with can be made to provide the six operations
   described above -- most monitors can since these are only additional
   supervisor calls.

   An example.  Suppose that our model time-sharing system is
   initialized to have several processes always running.  Additionally,
   these permanent processes have some universally known and permanently
   assigned ports<2>.  Suppose that two of the permanently running
   processes are the logger-process and the teletype-scanner-process.
   When the teletype-scanner-process first starts running, it puts
   itself to sleep awaiting an interrupt from the hardware teletype
   scanner.  The logger-process initially puts itself to sleep awaiting
   a message from the teletype-scanner-process via well-known permanent
   SEND and RECEIVE ports.  The teleype-scanner-process keeps a table
   indexed by teletype number, containing in each entry a pair of port
   numbers to use to send characters from that teletype to a process and
   a pair of port numbers to use to receive characters for that teletype
   from a process.  If a character arrives (waking up the teletype-
   scanner- process) and the process does not have any entry for that
   teletype, it gets a pair of unique numbers from the monitor (via
   UNIQUE) and sends a message containing this pair of numbers to the
   logger-process using the ports for which the logger-process is known
   to have a RECEIVE pending.  The scanner-process also enters the pair
   of numbers in the teletype table, and sends the character and all
   future characters from this teletype to the port with the first
   number from the port with the second number.  The scanner-process
   must also pass a second pair of unique numbers to the logger-process
   for it to use for teletype output and do a RECEIVE using these port
   numbers.  When the logger-process receives the message from the
   scanner-process, it starts up a copy of what SDS 940 TSS [6] users
   call the executive<3>, and passes the port numbers to this copy of
   the executive, so that this executive-process can also do its inputs
   and outputs to the teletype using these ports.  If the logger-process
   wants to get a job number and password from the user, it can
   temporarily use the port numbers to communicate with the user before
   it passes them on to the executive.  The scanner-process could always
   use the same port numbers for a particular teletype as long as the
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   numbers were passed on to only one copy of the executive at a time.

   It is important to distinguish between the act of passing a port from
   one process to another and the act of passing a port number from one
   process to another.  In the previous example, where characters from a
   particular teletype are sent either to the logger-process or an
   executive-process by the teletype-scanner-process, the SEND port
   always remains in the teletype-scanner-process while the RECEIVE port
   moves from the logger-process to the executive process.  On the other
   hand, the SEND port number is passed between the logger-process and
   the executive-process to enable the RECEIVE process to do a RECEIVE
   from the correct SEND port.  It is crucial that, once a process
   transfers a port to some other process, the first process no longer
   use the port.  We could add a mechanism that enforces this.  The
   protected object system of [9] is one such mechanism.  Using this
   mechanism, a process executing a SEND would need a capability for the
   SEND port and only one capability for this SEND port would exist in
   the system at any given time.  A process executing a RECEIVE would be
   required to have a capability for the RECEIVE port, and only one
   capability for this RECEIVE port would exist at a given time.
   Without such a protection mechanism, a port implicitly moves from one
   process to another by the processes merely using the port at disjoint
   times even if the port’s number is never explicitly passed.

   Of course, if the protected object system is available to us, there
   is really no need for two port numbers to be specified before a
   transmission can take place.  The fact that a process knows an
   existing RECEIVE port number could be considered prima facie evidence
   of the process’ right to send to that port.  The difference between
   RECEIVE and RECEIVE ANY ports then depends solely on the number of
   copies of a particular port number that have been passed out.  A
   system based on this approach would clearly be preferable to the one
   described here if it was possible to assume that all autonomous
   time-sharing systems in a network would adopt this protection
   mechanism.  If this assumption cannot be made, it seems more
   practical to require both port numbers.

   Note that in the interprocess communication system (IPC) being
   described here, when two processes wish to communicate they set up
   the connection themselves, and they are free to do it in a mutually
   convenient manner.  For instance, they can exchange port numbers or
   one process can pick all the port numbers and instruct the other
   process which to use.  However, in a particular implementation of a
   time-sharing system, the builders of the system might choose to
   restrict the processes’ execution of SENDs and RECEIVEs and might
   forbid arbitrary passing around of ports and port numbers, requiring
   instead that the monitor be called (or some other special program) to
   perform these functions.
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   Flow control is provided in this IPC by the simple method of never
   starting data transmission resultant from a SEND from one process
   until a RECEIVE is executed by the receiver.  Of course, interprocess
   messages may also be sent back and forth suggesting that a process
   stop sending or that space be allocated.

   Generally, well-known permanently-assigned ports are used via RECEIVE
   ANY and SEND FROM ANY.  The permanent ports will most often be used
   for starting processes and, consequently, little data will be sent
   via them.  If a process if running (perhaps asleep), and has a
   RECEIVE ANY pending, then any process knowing the receive port number
   can talk to that process without going through loggers.  This is
   obviously essential within a local time-sharing system and seems very
   useful in a more general network if the ideal of resource sharing is
   to be reached.  For instance, in a resource sharing network, the
   programs in the subroutine libraries at all sites might have RECEIVE
   ANYs always pending over permanently assigned ports with well-known
   port numbers.  Thus, to use a particular network resource such as a
   matrix manipulation hardware, a process running anywhere in the
   network can send a message to the matrix inversion subroutine
   containing the matrix to be inverted and the port numbers to be used
   for returning the results.

   An additional example demonstrates the use of the FORTRAN compiler.
   We have already explained how a user sits down at his teletype and
   gets connected to an executive.  We go on from there.  The user is
   typing in and out of the executive which is doing SENDs and RECEIVEs.
   Eventually the user types RUN FORTRAN, and executive asks the monitor
   to start up a copy of the FORTRAN compiler and passes to FORTRAN as
   start up parameters the port numbers the executive was using to talk
   to the teletype.  (This, at least conceptually, FORTRAN is passed a
   port at which to RECEIVE characters from the teletype and a port from
   which to SEND characters to the teletype.)  FORTRAN is, of course,
   expecting these parameters and does SENDs and RECEIVEs via the
   indicated ports to discover from the user what input and output files
   the user wants to use.  FORTRAN types INPUT FILE? to the user, who
   responds F001.  FORTRAN then sends a message to the file-system-
   process, which is asleep waiting for something to do.  The message is
   sent via well-known ports and it asks the file system to open F001
   for input. The message also contains a pair of port numbers that the
   file-system process can use to send its reply.  The file-system looks
   up F001, opens it for input, make some entries in its open file
   tables, and sends back to FORTRAN a message containing the port
   numbers that FORTRAN can use to read the file.  The same procedure is
   followed for the output file.  When the compilation is complete,
   FORTRAN returns the teletype port numbers (and the ports) back to the
   executive that has been asleep waiting for a message from FORTRAN,
   and then FORTRAN halts itself.  The file-system-process goes back to
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   sleep when it has nothing else to do<4>.

   Again, the file-system process can keep a small collection of port
   numbers which it uses over and over if it can get file system users
   to return the port numbers when they have finished with them.  Of
   course, when this collection of port numbers has eventually dribbled
   away, the file system can get some new unique numbers from the
   monitor.

3. A System for Interprocess Communication Between Remote Processes

   The IPC described in the previous section easily generalizes to allow
   interprocess communication between processes at geographically
   different locations as, for example, within a computer network.

   Consider first a simple configuration of processes distributed around
   the points of a star.  At each point of the star there is an
   autonomous operating system<5>.  A rather large, smart computer
   system, called the Network Controller, exists at the center of the
   star.  No processes can run in this center system, but rather it
   should be thought of as an extension of the monitor of each of the
   operating systems in the network.

   If the Network Controller is able to perform the operations SEND,
   RECEIVE, SEND FROM ANY, RECEIVE ANY, and UNIQUE and if all of the
   monitors in all of the time-sharing systems in the network do not
   perform these operations themselves but rather ask the Network
   Controller to perform these operations for them, then the problem of
   interprocess communication between remote processes if solved.  No
   further changes are necessary since the Network Controller can keep
   track of which RECEIVEs have been executed and which SENDs have been
   executed and match them up just as the monitor did in the model
   time-sharing system.  A networkwide port numbering scheme is also
   possible with the Network Controller knowing where (i.e., at which
   site) a particular port is at a particular time.

   Next, consider a more complex network in which there is no common
   center point, making it necessary to distribute the functions
   performed by the Network Controller among the network nodes.  In the
   rest of this section I will show that it is possible to efficiently
   and conveniently distribute the functions performed by the star
   Network Controller among the many network sites and still enable
   general interprocess communication between remote processes.

   Some changes must be made to each of the four SEND/RECEIVE operations
   described above to adapt them for use in a distributed Network
   Controller.  To RECEIVE is added a parameter specifying a site to
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   which the RECEIVE is to be sent.  To the SEND FROM ANY and SEND
   messages is added a site to send the SEND to although this is
   normally the local site.  Both RECEIVE and RECEIVE ANY have added the
   provision for obtaining the source site of any received message.
   Thus, when a RECEIVE is executed, the RECEIVE is sent to the site
   specified, possibly a remote site.  Concurrently a SEND is sent to
   the same site, normally the local site of the process executing the
   SEND.  At this site, called the rendezvous site, the RECEIVE is
   matched with the proper SEND and the message transmission is allowed
   to take place from the SEND site to the site from whence the RECEIVE
   came.

   A RECEIVE ANY never leaves its originating site and therein lies the
   necessity for SEND FROM ANY, since it must be possible to send a
   message to a RECEIVE ANY port and not have the message blocked
   waiting for a RECEIVE at the sending site.  It is possible to
   construct a system so the SEND/RECEIVE rendezvous takes place at the
   RECEIVE site and eliminates the SEND FROM ANY operation, but in my
   judgment the ability to block a normal SEND transmission at the
   source site more than makes up for the added complexity.

   At each site a rendezvous table is kept.  This table contains an
   entry for each unmatched SEND or RECEIVE received at that site and
   also an entry for all RECEIVE ANYs given at that site.  A matching
   SEND/RECEIVE pair is cleared from the table as soon as the match
   takes place.  As in the similar table kept in the model time-sharing,
   SEND and RECEIVE entries are timed out if unmatched for too long and
   the originator is notified.  RECEIVE ANY entries are cleared from the
   table when a fulfilling message arrives.

   The final change necessary to distribute the Network Controller
   functions is to give each site a portion of the unique numbers to
   distribute via its UNIQUE operation.  I’ll discuss this topic further
   below.

   To make it clear to the reader how the distributed Network Controller
   works, an example follows.  The details of what process picks port
   numbers, etc., are only exemplary and are not a standard specified as
   part of the IPC.

   Suppose that, for two sites in the network, K and L, process A at
   site K wishes to communicate with process B at site L.  Process B has
   a RECEIVE ANY pending at port M.
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                        SITE K                        SITE L

                        ______                        ______
                       /      \                      /      \
                      /        \                    /        \
                     /          \                  /          \
                    /            \                /            \
                   |              |              |              |
                   |   Process A  |              |   Process B  |
                   |              |              |              |
                    \            /                \            /
                     \          /      RECEIVE--> port M      /
                      \        /       ANY          \        /
                       \______/                      \______/

   Process A, fortunately, knows of the existence of port M at site L and
   sends a message using the SEND FROM ANY operation from port N to port
   M.  The message contains two port numbers and instructions for process
   B to SEND messages for process A to port P from port Q.  Site K’s site
   number is appended to this message along with the message’s SEND port N.

                        SITE K                        SITE L

                        ______                        ______
                       /      \                      /      \
                      /        \                    /        \
                     /          \                  /          \
                    /            \                /            \
                   |              |              |              |
                   |   Process A  |              |   Process B  |
                   |              |              |              |
                    \   port N   /                \   port M   /
                     \          /--->SEND FROM --->\          /
                      \        /        ANY         \        /
                       \______/                      \______/

                                   to port M, site L

                                   containing K,N,P, & Q

   Process A now executes a RECEIVE at port P from port Q.  Process A
   specifies the rendezvous site to be site L.
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                        SITE K                        SITE L

                        ______                        ______
                       /      \                      /      \
                      /        \                    /        \
                     /          \        Rendezvous/          \
                    /            \            table            \
                   |              |              |              |
                   |   Process A  |           ^  |   Process B  |
                   |              |           |  |              |
                    \   port P   /            |   \            /
                     \          /             |    \          /
                      \        / <--RECEIVE __/     \        /
                       \______/     MESSAGE          \______/

                                    to site L

                                    containing P, Q, & K

   A RECEIVE message is sent from site K to site L and is entered in the
   rendezvous table at site L.  At some other time, process B executes a
   SEND to port P from port Q specifying site L as the rendezvous site.

                        SITE K                        SITE L

                        ______                       ______
                       /      \                     /      \
                      /        \                   /        \
                     /          \       Rendezvous/          \
                    /            \           table            \
                   |              |             |              |
                   |   Process A  |             |   Process B  |
                   |              |             |              |
                    \   port P   /        <--------- port Q   /
                     \          /                 \          /
                      \        /        SEND       \        /
                       \______/                     \______/
                                        to site L

                                        containing P & Q

   A rendezvous is made, the rendezvous table is cleared, and the
   transmission to port P at site K takes place.  The SEND site number
   (and conceivably the SEND port number) is appended to the messages of
   the transmission for the edification of the receiving process.
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                        SITE K                         SITE L

                        ______                        ______
                       /      \                      /      \
                      /        \                    /        \
                     /          \                  /          \
                    /            \                /            \
                   |              |              |              |
                   |   Process A  |              |   Process B  |
                   |              |              |              |
                    \   port P   /                \   port Q   /
                     \          /<--transmission<--\          /
                      \        /                    \        /
                       \______/   to port P, site K  \______/

                                  containing data and L

   Process B may simultaneously wish to execute a RECEIVE from port N at
   port M.

   Note that there is only one important control message in this system
   which moves between sites, the type of message that is called a
   Host/Host protocol message in [2].  This control message is the
   RECEIVE message.  There are two other possible intersite control
   messages: an error message to the originating site when a RECEIVE or
   SEND is timed out, and the SEND message in the rare case when the
   rendezvous site is not the SEND site.  There must also be a standard
   format for messages between ports.  For example, the following:
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         _________________           __________________      _____________
        | rendezvous site |  <6>    | destination site |    | source site |
        |-----------------|         |------------------|    |-------------|
        |    RECEIVE port |         |   RECEIVE port   |    | RECEIVE port|
        |-----------------|         |------------------|    |-------------|
        |    SEND port    |         |   SEND port      |    | SEND port   |
        |-----------------|         |------------------|    |-------------|
        |                 |         |   source site    |    |             |
        |                 |         |------------------|    |             |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |     data        |         |     data         |    |   data      |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |                 |         |                  |    |             |
        |_________________|         |__________________|    |_____________|
         transmitted                 transmitted             received
         by SEND                     by Network              by RECEIVE
         process                     Controller              process

   In the model time-sharing system it was possible to pass a port form
   process to process.  This is still possible with a distributed Network
   Controller.

   Remember that, for a message to be sent from one process to another, a
   SEND to port M from port N and a RECEIVE at port M from port N must
   rendezvous, normally at the SEND site.  Both processes keep track of
   where they think the rendezvous site is and supply this site as a
   parameter of appropriate operations.  The RECEIVE process thinks it is
   the SEND site also.  Since once a SEND and a RECEIVE rendezvous the
   transmission is sent to the source of the RECEIVE and the entry in the
   rendezvous table is cleared and must be set up again for each further
   transmission from N to M, it is easy for a RECEIVE port to be moved.
   If a process sends both the port numbers and the rendezvous site
   number to a new process at some other site which executes a RECEIVE
   using these same old port numbers and rendezvous site specification,
   the SENDer never knows the RECEIVEr has moved.  It is slightly harder
   for a send port to move.  However, if it does, the pair of port
   numbers that has been being used for a SEND and the original
   rendezvous site number are passed to the new site.  The process at the
   new SEND site specifies the old rendezvous site with the first SEND
   from the new site.  The RECEIVE process will also still think the
   rendezvous site is the old site, so the SEND and RECEIVE will meet at
   the old site.  When they meet, the entry in the table at that site is
   cleared, and both the SEND and RECEIVE messages are sent to the new
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   SEND site just as if they had been destined for there in the first
   place.  The SEND and RECEIVE then meet again at the new rendezvous
   site and transmission may continue as if the port had never moved.
   Since all transmissions contain the source site number, further
   RECEIVEs will be sent to the new rendezvous site.  It is possible to
   discover that this special manipulation must take place because a SEND
   message is received at a site that did not originate the SEND
   message<7>.  Note that the SEND port and the RECEIVE port can move
   concurrently.

   Of course, all of this could have also been done if the processes had
   sent messages back and forth announcing any potential moves and the
   new site numbers.

   A problem that may have occurred to the reader is how the SEND and
   RECEIVE buffers get matched for size.  The easiest solution would be
   to require that all buffers have a common size but this is
   unacceptable since it does not easily extend to a situation where
   processes in autonomous operating systems are attempting to
   communicate.  A second solution is for the processes to pass messages
   specifying buffer sizes.  If this solution is adopted, excessive data
   sent from the SEND process and unable to fix into the RECEIVE buffer
   is discarded and the RECEIVE process notified.  The solution has great
   appeal on account of its simplicity.  A third solution would be for
   the RECEIVE buffer size to be passed to the SEND site with RECEIVE
   message and to notify the SEND process when too much data is sent or
   even to pass the RECEIVE buffer size on to the SEND process.  This
   last method would also permit the Network Controller at the SEND site
   to make two or more SENDs out of one, if that was necessary to match a
   smaller RECEIVE buffer size.

   The maintenance of unique numbers is also a problem when the processes
   are geographically distributed.  Three solutions to this problem are
   presented here.  The first possibility is for the autonomous operating
   systems to ask the Network Controller for the unique numbers
   originally and then guarantee the integrity of any unique numbers
   currently owned by local processes and programs using whatever means
   are at the operating system’s disposal.  In this case, the Network
   Controller would provide a method for a unique number to be sent from
   one site to another and would vouch for the number’s identity at the
   new site.  The second method is simply to give the unique numbers to
   the processes that are using them, depending on the non-malicious
   behavior of the processes to preserve the unique numbers, or if an
   accident should happen, the two passwords (SEND and RECEIVE port
   numbers) that are required to initiate a transmission.  If the unique
   numbers are given out in a non-sequential manner and are reasonably
   long (say 32 bits), there is little danger.  In the final method, a
   user identification is included in the port numbers and the individual
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   operating systems guarantee the integrity of these identification
   bits.  Thus a process, while not able to be sure that the correct port
   is transmitting to him, can be sure that some port of the correct user
   is transmitting.  This is the so-called virtual net concept suggested
   by W. Crowther [2].<8>

   A third difficult problem arises when remote processes wish to
   communicate, the problem of maintaining high bandwidth connections
   between the remote processes.  The solution to this problem lies in
   allowing the processes considerable information about the state of an
   on-going transmission.  First, we examine a SEND process in detail.
   When a process executes a SEND, the local portion of the Network
   Controller passes the SEND on to the rendezvous site, normally the
   local site.  When a RECEIVE arrives matching a pending SEND, the
   Network Controller notifies the SEND process by causing an interrupt
   to the specified restart location.  Simultaneously the Network
   Controller starts shipping the SEND buffer to the RECEIVE site.  When
   transmission is complete, a flag is set which the SEND process can
   test.  While a transmission is taking place, the process may ask the
   Network Controller to perform other operations, including other SENDs.
   A second SEND over a pair of ports already in the act of transmission
   is noted and the SEND becomes active as soon as the first transmission
   is complete.  A third identical SEND results in an error message to
   the SENDing process.  Next, we examine a RECEIVE process in detail.
   When a process executes a RECEIVE, the RECEIVE is sent to the
   rendezvous site.  When data resultant from this RECEIVE starts to
   arrive at the RECEIVE site, the RECEIVE process is notified via an
   interrupt to the specified restart location.  When the transmission is
   complete, a flag is set which the RECEIVE process can test.  A second
   RECEIVE over the same port pair is allowed.  A third results in an
   error message to the RECEIVE process.  Thus, there is sufficient
   machinery to allow a pair of processes always to have both a
   transmission in progress and the next one pending.  Therefore, no
   efficiency is lost.  On the other hand, each transmission must be
   preceded by a RECEIVE into a specified buffer, thus continuing to
   provide complete flow control.

4. A Potential Application

   Only one  resource sharing computer network currently exists, the
   ARPA Computer Network.  In this section, I discuss application of the
   system described in this paper to the ARPA Network [2][5][9].

   The ARPA Network currently incorporates ten sites spread across the
   United States.  Each site consists of one to three (potentially four)
   independent computer systems called Hosts and one communications
   computer system called an IMP.  All of the Hosts at a site are
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   directly connected to the IMP.  The IMPs themselves are connected
   together by 50-kilobit phone lines (much higher rate lines are a
   potential), although each IMP is connected to only one to five other
   IMPs.  The IMPs provide a communications subnet through which the
   Hosts communicate.  Data is sent through the communications subnet in
   messages of arbitrary size (currently about 8000 bits) called network
   messages.  When a network message is received by the IMP at the
   destination site, that IMP sends an acknowledgment, called a RFNM, to
   the source site.

   A system for interprocess communication for the ARPA Network (let us
   call this IPC for ARPA) is currently being designed by the Network
   Working Group, under the chairmanship of S. Crocker of UCLA.  Their
   design is somewhat constrained by the communications subnet [5]<9>.
   I would like to compare point-by-point IPC for ARPA with the one
   developed in this paper; however, such a comparison would first
   require description here, almost from scratch, of the current state
   of IPC for ARPA since very little up-to-date information about IPC
   for ARPA appears in the open literature [2].  Also, IPC for ARPA is
   quite complex and the working documents describing it now run to many
   hundred pages, making any description lengthy and inappropriate for
   this paper.<10> Therefore, I shall make only a few scattered
   comparisons of the two systems, the first of which are implicit in
   this paragraph.

   The interprocess communication system being developed for the ARPA
   Network comes in several almost distinct pieces: The Host/IMP
   protocol, IMP/IMP protocol, and the Host/Host protocol.  The IMPs
   have sole responsibility for correctly transmitting bits from one
   site to another.  The Hosts have sole responsibility for making
   interprocess connections.  Both the Host and IMP are concerned and
   take a little responsibility for flow control and message sequencing.
   Applications of the interprocess communication system described in
   this paper leads me to make a different allocation of responsibility.
   The IMP still continues to move bits from on site to another
   correctly but the Network Controller also resides in the IMP, and
   flow control is completely in the hands of the processes running in
   the Hosts, although using the mechanisms provided by the IMPs.

   The IMPs provide the SEND, RECEIVE, SEND FROM ANY, RECEIVE ANY, and
   UNIQUE operations in slightly altered forms for the Hosts and also
   maintain the rendezvous tables, including moving of SEND ports when
   necessary.  Putting these operations in the IMP requires the
   Host/Host protocol program to be written only once, rather than many
   times as is currently being done in the ARPA Network.  It is perhaps
   useful to step through the five operations again.

   SEND.  The Host gives the IMP a SEND port number, a RECEIVE port
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   number, the rendezvous site, and a buffer specification (e.g., start
   and end, or beginning and length).  The SEND is sent to the
   rendezvous site IMP, normally the local IMP.  When a matching RECEIVE
   arrives at the local IMP, the Host is notified of the RECEIVE port of
   the just arrived message.  This port number is sufficient to identify
   the SENDing process, although a given operating system may have to
   keep internal tables mapping this port number into a useful internal
   process identifier.  Simultaneously, the IMP begins to ask the Host
   for specific pieces of the SEND buffer, sending these pieces as
   network messages to the destination site.  If a RFNM is not received
   for too long, implying a network message has been lost in the
   network, the Host is asked for the same data again and it is
   retransmitted.<11> Except for the last piece of a buffer, the IMP
   requests pieces from the Host which are common multiplies of the word
   size of the source Host, IMP, and destination Host.  This avoids
   mid-transmission word alignment problems.

   RECEIVE.  The Host gives the IMP a SEND port, a RECEIVE port, a
   rendezvous site, and a buffer description.  The RECEIVE message is
   sent to the rendezvous site.  As the network messages making up a
   transmission arrive for the RECEIVE port, they are passed to the Host
   along with RECEIVE port number (and perhaps the SEND port number),
   and an indication to the Host where to put this data in its input
   buffer.  When the last network message of the SEND buffer is passed
   into the Host, it is marked accordingly and the Host can then detect
   this.  (It is conceivable that the RECEIVE message could also
   allocate a piece of network bandwidth while making its network
   traverse to the rendezvous site.)

   RECEIVE ANY.  The Host gives the IMP a RECEIVE port and a buffer
   descriptor.  This works the same as RECEIVE but assumes the local
   site to be the rendezvous site.

   SEND FROM ANY.  The Host gives the IMP RECEIVE and SEND ports, the
   destination site, and a buffer descriptor.  The IMP requests and
   transmits the buffer as fast as possible.  A SEND FROM ANY for a
   non-existent port is discarded at the destination site.

   In the ARPA Network, the Hosts are required by the IMPs to physically
   break their transmissions into network messages, and successive
   messages of a single transmission must be delayed until the RFNM is
   received for the previous message.  In the system described here,
   since RFNMs are tied to the transmission of a particular piece of
   buffer and since the Hosts allow the IMPs to reassemble buffers in
   the Hosts by the IMP telling the Host where to put each buffer piece
   then pieces of a single buffer can be transmitted in parallel network
   messages and several RFNMs can be outstanding simultaneously.  This
   enables The Hosts to deal with transmissions of more natural sizes

Walden                                                        [Page 17]



RFC 62                  IPC for Resource Sharing          3 August 1970

   and higher bandwidth for a single transmission.

   For additional efficiency, the IMP might know the approximate time it
   takes for a RECEIVE to get to a particular other site and warn the
   Host to wake up a process shortly before the arrival of a message for
   that process is imminent.

   5. Conclusion

   Since the system described in this paper has not been implemented, I
   have no clearly demonstrable conclusions nor any performance reports.
   Instead, I conclude with four openly subjective claims.

   1) The interprocess communication system described in Section 2 is
   simpler and more general than most existing systems of equivalent
   power and is more powerful than most intra time-sharing system
   communication systems currently available.

   2) Time-sharing systems structured like the model in Section 2 should
   be studied by designers of time-sharing systems who may see a
   computer network in their future, as structure seems to enable
   joining a computer network with a minimum of difficulty.

   3) As computer networks become more common, remote interprocess
   communication systems like the one described in Section 3 should be
   studied.  The system currently being developed for ARPA is a step in
   the wrong direction, being addressed, in my opinion, more to
   communication between monitors than to communication between
   processes and consequently subverting convenient resource sharing.

   4) The application of the system as described in Section 4 is much
   simpler to implement and more powerful than the system currently
   being constructed for the ARPA Network, and I suggest that
   implementation of my method be seriously considered for adoption by
   the ARPA Network.

 <Footnotes>

    1. Almost any of the common definitions of a process would suit the
       needs of this paper.

    2. Or perhaps there is only one permanently known port, which
       belongs to a directory-process that keeps a table of
       permanent-process/well-know-port associations.

    3. That program which prints file directories, tells who is on other
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       teletypes, runs subsystems, etc.

    4. The reader should have noticed by now that I do not like to think
       of a new process (consisting of a new conceptual copy of a
       program) being started up each time another user wishes to use
       the program.  Rather, I like to think of the program as a single
       process which knows it is being used simultaneously by many other
       processes and consciously multiplexes among the users or delays
       service to users until it can get around to them.

    5. I use operating system rather than time-sharing system in this
       section to point up the fact that the autonomous systems at the
       network nodes may be either full blown time-sharing systems in
       their own right, and individual process in a larger
       geographically distributed time-sharing system, or merely
       autonomous sites wishing to communicate.

    6. For a SEND FROM ANY message, the rendezvous site is the
       destination site.

    7. For readers familiar with the once-proposed re-connection scheme
       for the ARPA Network, the above system is simple, comparatively,
       because there are no permanent connections to break and move;
       that is, connections only exist fleetingly in the system
       described here and can therefore be remade between any pair of
       processes which at any time happen to know each other’s port
       numbers and have some clue where they each are.

    8. Crowther says this is not the virtual net concept.

    9. As one of the builders of the ARPA communications subnet, I am
       partially responsible for these constraints.

   10. The reader having access to the ARPA working documents may want
       to read Specifications for the Interconnection of a Host to
       an IMP, BBN Report No. 1822; and ARPA Network Working Group
       Notes #36, 37, 38, 39, 42, 44, 46, 47, 48, 49, 50, 54, 55, 56,
       57, 58, 59, 60.

   11. This also allows messages to be completely thrown away by the IMP
       subnet it that should ever be useful.
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