
Network Working Group T. Freeman
Request for Comments: 5055 Microsoft Corp
Category: Standards Track R. Housley
 Vigil Security
 A. Malpani
 Malpani Consulting Services
 D. Cooper
 W. Polk
 NIST
 December 2007

 Server-Based Certificate Validation Protocol (SCVP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 The Server-Based Certificate Validation Protocol (SCVP) allows a
 client to delegate certification path construction and certification
 path validation to a server. The path construction or validation
 (e.g., making sure that none of the certificates in the path are
 revoked) is performed according to a validation policy, which
 contains one or more trust anchors. It allows simplification of
 client implementations and use of a set of predefined validation
 policies.

Table of Contents

 1. Introduction ..4
 1.1. Terminology ..4
 1.2. SCVP Overview ..5
 1.3. SCVP Requirements ..5
 1.4. Validation Policies ..6
 1.5. Validation Algorithm7
 1.6. Validation Requirements8
 2. Protocol Overview ...9
 3. Validation Request ..9
 3.1. cvRequestVersion ..12
 3.2. query ...12
 3.2.1. queriedCerts13
 3.2.2. checks ...15

Freeman, et al. Standards Track [Page 1]

RFC 5055 SCVP December 2007

 3.2.3. wantBack ...16
 3.2.4. validationPolicy19
 3.2.4.1. validationPolRef20
 3.2.4.1.1. Default Validation Policy21
 3.2.4.2. validationAlg22
 3.2.4.2.1. Basic Validation Algorithm22
 3.2.4.2.2. Basic Validation
 Algorithm Errors23
 3.2.4.2.3. Name Validation Algorithm24
 3.2.4.2.4. Name Validation
 Algorithm Errors25
 3.2.4.3. userPolicySet26
 3.2.4.4. inhibitPolicyMapping26
 3.2.4.5. requireExplicitPolicy27
 3.2.4.6. inhibitAnyPolicy27
 3.2.4.7. trustAnchors27
 3.2.4.8. keyUsages28
 3.2.4.9. extendedKeyUsages28
 3.2.4.10. specifiedKeyUsages29
 3.2.5. responseFlags30
 3.2.5.1. fullRequestInResponse30
 3.2.5.2. responseValidationPolByRef30
 3.2.5.3. protectResponse31
 3.2.5.4. cachedResponse31
 3.2.6. serverContextInfo32
 3.2.7. validationTime32
 3.2.8. intermediateCerts33
 3.2.9. revInfos ...34
 3.2.10. producedAt ..35
 3.2.11. queryExtensions35
 3.2.11.1. extnID35
 3.2.11.2. critical35
 3.2.11.3. extnValue36
 3.3. requestorRef ..36
 3.4. requestNonce ..36
 3.5. requestorName ...37
 3.6. responderName ...37
 3.7. requestExtensions ...38
 3.7.1. extnID ...38
 3.7.2. critical ...38
 3.7.3. extnValue ..38
 3.8. signatureAlg ..38
 3.9. hashAlg ...39
 3.10. requestorText ..39
 3.11. SCVP Request Authentication40
 4. Validation Response...40
 4.1. cvResponseVersion...43
 4.2. serverConfigurationID.......................................43

Freeman, et al. Standards Track [Page 2]

RFC 5055 SCVP December 2007

 4.3. producedAt..44
 4.4. responseStatus..44
 4.5. respValidationPolicy..46
 4.6. requestRef..47
 4.6.1. requestHash ..47
 4.6.2. fullRequest ..48
 4.7. requestorRef..48
 4.8. requestorName...48
 4.9. replyObjects..49
 4.9.1. cert..50
 4.9.2. replyStatus...50
 4.9.3. replyValTime51
 4.9.4. replyChecks ..51
 4.9.5. replyWantBacks53
 4.9.6. validationErrors56
 4.9.7. nextUpdate ...56
 4.9.8. certReplyExtensions56
 4.10. respNonce..57
 4.11. serverContextInfo..57
 4.12. cvResponseExtensions58
 4.13. requestorText ...58
 4.14. SCVP Response Validation59
 4.14.1. Simple Key Validation59
 4.14.2. SCVP Server Certificate Validation59
 5. Server Policy Request...60
 5.1. vpRequestVersion...60
 5.2. requestNonce...60
 6. Validation Policy Response......................................61
 6.1. vpResponseVersion..62
 6.2. maxCVRequestVersion..62
 6.3. maxVPRequestVersion..62
 6.4. serverConfigurationID......................................62
 6.5. thisUpdate...63
 6.6. nextUpdate and requestNonce................................63
 6.7. supportedChecks..63
 6.8. supportedWantBacks...64
 6.9. validationPolicies...64
 6.10. validationAlgs..64
 6.11. authPolicies..64
 6.12. responseTypes...64
 6.13. revocationInfoTypes.......................................64
 6.14. defaultPolicyValues.......................................65
 6.15. signatureGeneration65
 6.16. signatureVerification65
 6.17. hashAlgorithms ...66
 6.18. serverPublicKeys ...66
 6.19. clockSkew ..66
 7. SCVP Server Relay...67

Freeman, et al. Standards Track [Page 3]

RFC 5055 SCVP December 2007

 8. SCVP ASN.1 Module...68
 9. Security Considerations...76
 10.IANA Considerations...78
 11. References...78
 11.1. Normative References.....................................78
 11.2. Informative References...................................79
 12. Acknowledgments..80
 Appendix A. MIME Media Type Registrations..........................81
 A.1. application/scvp-cv-request..............................81
 A.2. application/scvp-cv-response.............................82
 A.3. application/scvp-vp-request..............................83
 A.4. application/scvp-vp-response.............................84
 Appendix B. SCVP over HTTP...85
 B.1. SCVP Request...85
 B.2. SCVP Response..85
 B.3. SCVP Policy Request......................................86
 B.4. SCVP Policy Response.....................................86

1. Introduction

 Certificate validation is complex. If certificate handling is to be
 widely deployed in a variety of applications and environments, the
 amount of processing an application needs to perform before it can
 accept a certificate needs to be reduced. There are a variety of
 applications that can make use of public key certificates, but these
 applications are burdened with the overhead of constructing and
 validating the certification paths. SCVP reduces this overhead for
 two classes of certificate-using applications.

 The first class of applications wants just two things: confirmation
 that the public key belongs to the identity named in the certificate
 and confirmation that the public key can be used for the intended
 purpose. Such clients can completely delegate certification path
 construction and validation to the SCVP server. This is often
 referred to as delegated path validation (DPV).

 The second class of applications can perform certification path
 validation, but they lack a reliable or efficient method of
 constructing a valid certification path. Such clients delegate
 certification path construction to the SCVP server, but not
 validation of the returned certification path. This is often
 referred to as delegated path discovery (DPD).

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [STDWORDS].

Freeman, et al. Standards Track [Page 4]

RFC 5055 SCVP December 2007

1.2. SCVP Overview

 The primary goals of SCVP are to make it easier to deploy Public Key
 Infrastructure (PKI)-enabled applications by delegating path
 discovery and/or validation processing to a server, and to allow
 central administration of validation policies within an organization.
 SCVP can be used by clients that do much of the certificate
 processing themselves but simply want an untrusted server to collect
 information for them. However, when the client has complete trust in
 the SCVP server, SCVP can be used to delegate the work of
 certification path construction and validation, and SCVP can be used
 to ensure that policies are consistently enforced throughout an
 organization.

 Untrusted SCVP servers can provide clients the certification paths.
 They can also provide clients the revocation information, such as
 Certificate Revocation Lists (CRLs) and Online Certificate Status
 Protocol (OCSP) responses, that the clients need to validate the
 certification paths constructed by the SCVP server. These services
 can be valuable to clients that do not implement the protocols needed
 to find and download intermediate certificates, CRLs, and OCSP
 responses.

 Trusted SCVP servers can perform certification path construction and
 validation for the client. For a client that uses these services,
 the client inherently trusts the SCVP server as much as it would its
 own certification path validation software (if it contained such
 software). There are two main reasons that a client may want to
 trust such an SCVP server:

 1. The client does not want to incur the overhead of including
 certification path validation software and running it for each
 certificate it receives.

 2. The client is in an organization or community that wants to
 centralize management of validation policies. These policies
 might dictate that particular trust anchors are to be used and the
 types of policy checking that are to be performed during
 certification path validation.

1.3. SCVP Requirements

 SCVP meets the mandatory requirements documented in [RQMTS] for DPV
 and DPD.

Freeman, et al. Standards Track [Page 5]

RFC 5055 SCVP December 2007

 Note that RFC 3379 states the following requirement:

 The DPD response MUST indicate one of the following status
 alternatives:

 1) one or more certification paths was found according to the path
 discovery policy, with all of the requested revocation
 information present.

 2) one or more certification paths was found according to the path
 discovery policy, with a subset of the requested revocation
 information present.

 3) one or more certification paths was found according to the path
 discovery policy, with none of the requested revocation
 information present.

 4) no certification path was found according to the path discovery
 policy.

 5) path construction could not be performed due to an error.

 DPD responses constructed by SCVP servers do not differentiate
 between states 2) and 3). This property was discussed on the PKIX
 working group list and determined to be conformant with the intent of
 [RQMTS].

1.4. Validation Policies

 A validation policy (as defined in RFC 3379 [RQMTS]) specifies the
 rules and parameters to be used by the SCVP server when validating a
 certificate. In SCVP, the validation policy to be used by the server
 either can be fully referenced in the request by the client (and thus
 no additional parameters are necessary) or can be referenced in the
 request by the client with additional parameters.

 Policy definitions can be quite long and complex, and some policies
 may allow for the setting of a few parameters. The request can
 therefore be very simple if an object identifier (OID) is used to
 specify both the algorithm to be used and all the associated
 parameters of the validation policy. The request can be more complex
 if the validation policy fixes many of the parameters but allows the
 client to specify some of them. When the validation policy defines
 every parameter necessary, an SCVP request needs only to contain the
 certificate to be validated, the referenced validation policy, and
 any run-time parameters for the request.

Freeman, et al. Standards Track [Page 6]

RFC 5055 SCVP December 2007

 A server publishes the references of the validation policies it
 supports. When these policies have parameters that may be
 overridden, the server communicates the default values for these
 parameters as well. The client can simplify the request by omitting
 a parameter from a request if the default value published by the
 server for a given validation policy reference is acceptable.
 However, if there is a desire to demonstrate to someone else that a
 specific validation policy with all its parameters has been used, the
 client will need to ask the server for the inclusion of the full
 validation policy with all the parameters in the response.

 The inputs to the basic certification path processing algorithm used
 by SCVP are defined by [PKIX-1] in Section 6.1.1 and comprise:

 Certificate to be validated (by value or by reference);

 Validation time;

 The initial policy set;

 Initial inhibit policy mapping setting;

 Initial inhibit anyPolicy setting; and

 Initial require explicit policy setting.

 The basic certification path processing algorithm also supports
 specification of one or more trust anchors (by value or reference) as
 an input. Where the client demands a certification path originating
 with a specific Certification Authority (CA), a single trust anchor
 is specified. Where the client is willing to accept paths beginning
 with any of several CAs, a set of trust anchors is specified.

 The basic certification path processing algorithm also supports the
 following parameters, which are defined in [PKIX-1], Section 4:

 The usage of the key contained in the certificate (e.g., key
 encipherment, key agreement, signature); and

 Other application-specific purposes for which the certified public
 key may be used.

1.5. Validation Algorithm

 The validation algorithm is determined by agreement between the
 client and the server and is represented as an OID. The algorithm
 defines the checking that will be performed by the server to
 determine whether the certificate is valid. A validation algorithm

Freeman, et al. Standards Track [Page 7]

RFC 5055 SCVP December 2007

 is one of the parameters to a validation policy. SCVP defines a
 basic validation algorithm that implements the basic path validation
 algorithm as defined in [PKIX-1], and it permits the client to
 request additional information about the certificate to be validated.
 New validation algorithms can be specified that define additional
 checks if needed. These new validation algorithms may specify
 additional parameters. The values for these parameters may be
 defined by any validation policy that uses the algorithm or may be
 included by the client in the request.

 Application-specific validation algorithms, in addition to those
 defined in this document, can be defined to meet specific
 requirements not covered by the basic validation algorithm. The
 validation algorithms documented here should serve as a guide for the
 development of further application-specific validation algorithms.
 For example, a new application-specific validation algorithm might
 require the presence of a particular name form in the subject
 alternative name extension of the certificate.

1.6. Validation Requirements

 For a certification path to be considered valid under a particular
 validation policy, it MUST be a valid certification path as defined
 in [PKIX-1], and all validation policy constraints that apply to the
 certification path MUST be verified.

 Revocation checking is one aspect of certification path validation
 defined in [PKIX-1]. However, revocation checking is an optional
 feature in [PKIX-1], and revocation information is distributed in
 multiple formats. Clients specify in requests whether revocation
 checking should be performed and whether revocation information
 should be returned in the response.

 Servers MUST be capable of indicating the sources of revocation
 information that they are capable of processing:

 1. full CRLs (or full Authority Revocation Lists);

 2. OCSP responses, using [OCSP];

 3. delta CRLs; and

 4. indirect CRLs.

Freeman, et al. Standards Track [Page 8]

RFC 5055 SCVP December 2007

2. Protocol Overview

 SCVP uses a simple request-response model. That is, the SCVP client
 creates a request and sends it to the SCVP server, and then the SCVP
 server creates a single response and sends it to the client. The
 typical use of SCVP is expected to be over HTTP [HTTP], but it can
 also be used with email or any other protocol that can transport
 digitally signed objects. Appendices A and B provide the details
 necessary to use SCVP with HTTP.

 SCVP includes two request-response pairs. The primary request-
 response pair handles certificate validation. The secondary request-
 response pair is used to determine the list of validation policies
 and default parameters supported by a specific SCVP server.

 Section 3 defines the certificate validation request.

 Section 4 defines the corresponding certificate validation response.

 Section 5 defines the validation policies request.

 Section 6 defines the corresponding validation policies response.

 Appendix A registers MIME types for SCVP requests and responses, and
 Appendix B describes the use of these MIME types with HTTP.

3. Validation Request

 An SCVP client request to the server MUST be a single CVRequest item.
 When a CVRequest is encapsulated in a MIME body part,
 application/scvp-cv-request MUST be used. There are two forms of
 SCVP request: unprotected and protected. A protected request is used
 to authenticate the client to the server or to provide anonymous
 client integrity over the request-response pair. The protection is
 provided by a digital signature or message authentication code (MAC).
 In the later case, the MAC key is derived using a key agreement
 algorithm, such as Diffie-Hellman. If the client’s public key is
 contained in a certificate, then it may be used to authenticate the
 client. More commonly, the client’s key agreement public key will be
 ephemeral, supporting anonymous client integrity.

 A server MAY require all requests to be protected, and a server MAY
 discard all unprotected requests. Alternatively, a server MAY choose
 to process unprotected requests.

 The unprotected request consists of a CVRequest encapsulated in a
 Cryptographic Message Syntax (CMS) ContentInfo [CMS]. An overview of
 this structure is provided below and is only intended as

Freeman, et al. Standards Track [Page 9]

RFC 5055 SCVP December 2007

 illustrative. The definitive ASN.1 is found in [CMS]. Many details
 are not shown, but the way that SCVP makes use of CMS is clearly
 illustrated.

 ContentInfo {
 contentType id-ct-scvp-certValRequest,
 -- (1.2.840.113549.1.9.16.1.10)
 content CVRequest }

 The protected request consists of a CVRequest encapsulated in either
 a SignedData or AuthenticatedData, which is in turn encapsulated in a
 ContentInfo. That is, the EncapsulatedContentInfo field of either
 SignedData or AuthenticatedData consists of an eContentType field
 with a value of id-ct-scvp-certValRequest and an eContent field that
 contains a Distinguished Encoding Rules (DER)-encoded CVRequest.
 SignedData is used when the request is digitally signed.
 AuthenticatedData is used with a message authentication code (MAC).

 All SCVP clients and servers MUST support SignedData for signed
 requests and responses. SCVP clients and servers SHOULD support
 AuthenticatedData for MAC-protected requests and responses.

 If the client uses SignedData, it MUST have a public key that has
 been bound to a subject identity by a certificate that conforms to
 the PKIX profile [PKIX-1], and that certificate MUST be suitable for
 signing the SCVP request. That is:

 1. If the key usage extension is present, either the digital
 signature or the non-repudiation bit MUST be asserted.

 2. If the extended key usage extension is present, it MUST contain
 either the SCVP client OID (see Section 3.11), the
 anyExtendedKeyUsage OID, or another OID acceptable to the SCVP
 server.

 The client MUST put an unambiguous reference to its certificate in
 the SignedData that encapsulates the request. The client SHOULD
 include its certificate in the request, but MAY omit the certificate
 to reduce the size of the request. The client MAY include other
 certificates in the request to aid the validation of its certificates
 by the SCVP server. The signerInfos field of SignedData MUST include
 exactly one SignerInfo. The SignedData MUST NOT include the
 unsignedAttrs field.

Freeman, et al. Standards Track [Page 10]

RFC 5055 SCVP December 2007

 The client MUST put its key agreement public key, or an unambiguous
 reference to a certificate that contains its key agreement public
 key, in the AuthenticatedData that encapsulates the request. If an
 ephemeral key agreement key pair is used, then the ephemeral key
 agreement public key is carried in the originatorKey field of
 KeyAgreeRecipientInfo, which requires the client to obtain the
 server’s key agreement public key before computing the message
 authentication code (MAC). An SCVP server’s key agreement key is
 included in its validation policy response message (see Section 6).
 The recipientInfos field of AuthenticatedData MUST include exactly
 one RecipientInfo, which contains information for the SCVP server.
 The AuthenticatedData MUST NOT include the unauthAttrs field.

 The syntax and semantics for SignedData, AuthenticatedData, and
 ContentInfo are defined in [CMS]. The syntax and semantics for
 CVRequest are defined below. The CVRequest item contains the client
 request. The CVRequest contains the cvRequestVersion and query
 items; the CVRequest MAY also contain the requestorRef, requestNonce,
 requestorName, responderName, requestExtensions, signatureAlg, and
 hashAlg items.

 The CVRequest MUST have the following syntax:

 CVRequest ::= SEQUENCE {
 cvRequestVersion INTEGER DEFAULT 1,
 query Query,
 requestorRef [0] GeneralNames OPTIONAL,
 requestNonce [1] OCTET STRING OPTIONAL,
 requestorName [2] GeneralName OPTIONAL,
 responderName [3] GeneralName OPTIONAL,
 requestExtensions [4] Extensions OPTIONAL,
 signatureAlg [5] AlgorithmIdentifier OPTIONAL,
 hashAlg [6] OBJECT IDENTIFIER OPTIONAL,
 requestorText [7] UTF8String (SIZE (1..256)) OPTIONAL }

 Conforming clients MUST be able to construct requests with
 cvRequestVersion and query. Conforming clients MUST DER encode the
 CVRequest in both protected and unprotected messages to facilitate
 unambiguous hash-based referencing in the corresponding response
 message. SCVP clients that insist on creation of a fresh response
 (e.g., to protect against a replay attack or ensure information is up
 to date) MUST support requestNonce. Support for the remaining items
 is optional in client implementations.

 Conforming servers MUST be able to parse CVRequests that contain any
 or all of the optional items.

Freeman, et al. Standards Track [Page 11]

RFC 5055 SCVP December 2007

 Each of the items within the CVRequest is described in the following
 sections.

3.1. cvRequestVersion

 The cvRequestVersion item defines the version of the SCVP CVRequest
 used in a request. The subsequent response MUST use the same version
 number. The value of the cvRequestVersion item MUST be one (1) for a
 client implementing this specification. Future updates to this
 specification must specify other values if there are any changes to
 syntax or semantics. However, new extensions may be defined without
 changing the version number.

 SCVP clients MUST support asserting this value and SCVP servers MUST
 be capable of processing this value.

3.2. query

 The query item specifies one or more certificates that are the
 subject of the request; the certificates can be either public key
 certificates [PKIX-1] or attribute certificates [PKIX-AC]. A query
 MUST contain a queriedCerts item as well as one checks item, and one
 validationPolicy item; a query MAY also contain wantBack,
 responseFlags, serverContextInfo, validationTime, intermediateCerts,
 revInfos, producedAt, and queryExtensions items.

 A Query MUST have the following syntax:

 Query ::= SEQUENCE {
 queriedCerts CertReferences,
 checks CertChecks,
 -- Note: tag [0] not used --
 wantBack [1] WantBack OPTIONAL,
 validationPolicy ValidationPolicy,
 responseFlags ResponseFlags OPTIONAL,
 serverContextInfo [2] OCTET STRING OPTIONAL,
 validationTime [3] GeneralizedTime OPTIONAL,
 intermediateCerts [4] CertBundle OPTIONAL,
 revInfos [5] RevocationInfos OPTIONAL,
 producedAt [6] GeneralizedTime OPTIONAL,
 queryExtensions [7] Extensions OPTIONAL }

 The list of certificate references in the queriedCerts item tells the
 server the certificate(s) for which the client wants information.
 The checks item specifies the checking that the client wants
 performed. The wantBack item specifies the objects that the client
 wants the server to return in the response. The validationPolicy
 item specifies the validation policy that the client wants the server

Freeman, et al. Standards Track [Page 12]

RFC 5055 SCVP December 2007

 to employ. The responseFlags item allows the client to request
 optional features for the response. The serverContextInfo item tells
 the server that additional information from a previous request-
 response is desired. The validationTime item tells the date and time
 relative to which the client wants the server to perform the checks.
 The intermediateCerts and revInfos items provide context for the
 client request. The queryExtensions item provides for future
 expansion of the query syntax. The syntax and semantics of each of
 these items are discussed in the following sections.

 Conforming clients MUST be able to construct a Query with a
 queriedCerts item that specifies at least one certificate, checks,
 and validationPolicy. Conforming SCVP clients MAY support
 specification of multiple certificates and MAY support the optional
 items in the Query structure.

 SCVP clients that support delegated path discovery (DPD) as defined
 in [RQMTS] MUST support wantBack and responseFlags. SCVP clients
 that insist on creation of a fresh response (e.g., to protect against
 a replay attack or ensure information is up to date) MUST support
 responseFlags.

 Conforming servers MUST be able to process a Query that contains any
 of the optional items, and MUST be able to process a Query that
 specifies multiple certificates.

3.2.1. queriedCerts

 The queriedCerts item is a SEQUENCE of one or more certificates, each
 of which is a subject of the request. The specified certificates are
 either public key certificates or attribute certificates; if more
 than one certificate is specified, all must be of the same type.
 Each certificate is either directly included, or it is referenced.
 When referenced, a hash value of the referenced item is included to
 ensure that the SCVP client and the SCVP server both obtain the same
 certificate when the referenced certificate is fetched. Certificate
 references use the SCVPCertID type, which is described below. A
 single request MAY contain both directly included and referenced
 certificates.

 CertReferences has the following syntax:

 CertReferences ::= CHOICE {
 pkcRefs [0] SEQUENCE SIZE (1..MAX) OF PKCReference,
 acRefs [1] SEQUENCE SIZE (1..MAX) OF ACReference }

Freeman, et al. Standards Track [Page 13]

RFC 5055 SCVP December 2007

 PKCReference ::= CHOICE {
 cert [0] Certificate,
 pkcRef [1] SCVPCertID }

 ACReference ::= CHOICE {
 attrCert [2] AttributeCertificate,
 acRef [3] SCVPCertID }

 SCVPCertID ::= SEQUENCE {
 certHash OCTET STRING,
 issuerSerial SCVPIssuerSerial,
 hashAlgorithm AlgorithmIdentifier DEFAULT { algorithm sha-1 } }

 The ASN.1 definition of Certificate is imported from [PKIX-1] and the
 definition of AttributeCertificate is imported from [PKIX-AC].

 When creating a SCVPCertID, the certHash is computed over the entire
 DER-encoded certificate including the signature. The hash algorithm
 used to compute certHash is specified in hashAlgorithm. The hash
 algorithm used to compute certHash SHOULD be one of the hash
 algorithms specified in the hashAlgorithms item of the server’s
 validation policy response message.

 When encoding SCVPIssuerSerial, serialNumber is the serial number
 that uniquely identifies the certificate. For public key
 certificates, the issuer MUST contain only the issuer name from the
 certificate encoded in the directoryName choice of GeneralNames. For
 attribute certificates, the issuer MUST contain the issuer name field
 from the attribute certificate.

 Conforming clients MUST be able to reference a certificate by direct
 inclusion. Clients SHOULD be able to specify a certificate using the
 SCVPCertID. Conforming clients MAY be able to reference multiple
 certificates and MAY be able to reference both public key and
 attribute certificates.

 Conforming SCVP Server implementations MUST be able to process
 CertReferences with multiple certificates. Conforming SCVP server
 implementations MUST be able to parse CertReferences that contain
 either public key or attribute certificates. Conforming SCVP server
 implementations MUST be able to parse both the cert and pkcRef
 choices in PKCReference. Conforming SCVP server implementations that
 process attribute certificates MUST be able to parse both the
 attrCert and acRef choices in ACReference.

Freeman, et al. Standards Track [Page 14]

RFC 5055 SCVP December 2007

3.2.2. checks

 The checks item describes the checking that the SCVP client wants the
 SCVP server to perform on the certificate(s) in the queriedCerts
 item. The checks item contains a sequence of object identifiers
 (OIDs). Each OID tells the SCVP server what checking the client
 expects the server to perform. For each check specified in the
 request, the SCVP server MUST perform the requested check, or return
 an error. A server may choose to perform additional checks (e.g., a
 server that is only asked to build a validated certification path may
 choose to also perform revocation status checks), although the server
 cannot indicate in the response that the additional checks have been
 performed, except in the case of an error response.

 The checks item uses the CertChecks type, which has the following
 syntax:

 CertChecks ::= SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

 For public key certificates, the following checks are defined in this
 document:

 - id-stc-build-pkc-path: Build a prospective certification path to a
 trust anchor (as defined in Section 6.1 of [PKIX-1]);

 - id-stc-build-valid-pkc-path: Build a validated certification path
 to a trust anchor (revocation checking not required);

 - id-stc-build-status-checked-pkc-path: Build a validated
 certification path to a trust anchor and perform revocation status
 checks on the certification path.

 Conforming SCVP server implementations that support delegated path
 discovery (DPD) as defined in [RQMTS] MUST support the id-stc-build-
 pkc-path check. Conforming SCVP server implementations that support
 delegated path validation (DPV) as defined in [RQMTS] MUST support
 the id-stc-build-valid-pkc-path and id-stc-build-status-checked-pkc-
 path checks.

 For attribute certificates, the following checks are defined in this
 document:

 - id-stc-build-aa-path: Build a prospective certification path to a
 trust anchor for the Attribute Certificate (AC) issuer;

 - id-stc-build-valid-aa-path: Build a validated certification path
 to a trust anchor for the AC issuer;

Freeman, et al. Standards Track [Page 15]

RFC 5055 SCVP December 2007

 - id-stc-build-status-checked-aa-path: Build a validated
 certification path to a trust anchor for the AC issuer and perform
 revocation status checks on the certification path for the AC
 issuer;

 - id-stc-status-check-ac-and-build-status-checked-aa-path: Build a
 validated certification path to a trust anchor for the AC issuer
 and perform revocation status checks on the AC as well as the
 certification path for the AC issuer.

 Conforming SCVP server implementations MAY support the attribute
 certificates checks.

 For these purposes, the following OIDs are defined:

 id-stc OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 17 }

 id-stc-build-pkc-path OBJECT IDENTIFIER ::= { id-stc 1 }
 id-stc-build-valid-pkc-path OBJECT IDENTIFIER ::= { id-stc 2 }
 id-stc-build-status-checked-pkc-path
 OBJECT IDENTIFIER ::= { id-stc 3 }
 id-stc-build-aa-path OBJECT IDENTIFIER ::= { id-stc 4 }
 id-stc-build-valid-aa-path OBJECT IDENTIFIER ::= { id-stc 5 }
 id-stc-build-status-checked-aa-path
 OBJECT IDENTIFIER ::= { id-stc 6 }
 id-stc-status-check-ac-and-build-status-checked-aa-path
 OBJECT IDENTIFIER ::= { id-stc 7 }

 Other specifications may define additional checks.

 Conforming client implementations MUST support assertion of at least
 one of the standard checks. Conforming clients MAY support assertion
 of multiple checks. Conforming clients need not support all of the
 checks defined in this section.

3.2.3. wantBack

 The optional wantBack item describes any information the SCVP client
 wants from the SCVP server for the certificate(s) in the queriedCerts
 item in addition to the results of the checks specified in the checks
 item. If present, the wantBack item MUST contain a sequence of
 object identifiers (OIDs). Each OID tells the SCVP server what the
 client wants to know about the queriedCerts item. For each type of
 information specified in the request, the server MUST return
 information regarding its finding (in a successful response).

Freeman, et al. Standards Track [Page 16]

RFC 5055 SCVP December 2007

 For example, a request might include a checks item that only
 specifies certification path building and include a wantBack item
 that requests the return of the certification path built by the
 server. In this case, the response would not include a status for
 the validation of the certification path, but it would include a
 prospective certification path. A client that wants to perform its
 own certification path validation might use a request of this form.

 Alternatively, a request might include a checks item that requests
 the server to build a certification path and validate it, including
 revocation checking, and not include a wantBack item. In this case,
 the response would include only a status for the validation of the
 certification path. A client that completely delegates certification
 path validation might use a request of this form.

 The wantBack item uses the WantBack type, which has the following
 syntax:

 WantBack ::= SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

 For public key certificates, the following wantBacks are defined in
 this document:

 - id-swb-pkc-cert: The certificate that was the subject of the
 request;

 - id-swb-pkc-best-cert-path: The certification path built for the
 certificate including the certificate that was validated;

 - id-swb-pkc-revocation-info: Proof of revocation status for each
 certificate in the certification path;

 - id-swb-pkc-public-key-info: The public key from the certificate
 that was the subject of the request;

 - id-swb-pkc-all-cert-paths: A set of certification paths for the
 certificate that was the subject of the request;

 - id-swb-pkc-ee-revocation-info: Proof of revocation status for the
 end entity certificate in the certification path; and

 - id-swb-pkc-CAs-revocation-info: Proof of revocation status for
 each CA certificate in the certification path.

Freeman, et al. Standards Track [Page 17]

RFC 5055 SCVP December 2007

 All conforming SCVP server implementations MUST support the id-swb-
 pkc-cert and id-swb-pkc-public-key-info wantBacks. Conforming SCVP
 server implementations that support delegated path discovery (DPD) as
 defined in [RQMTS] MUST support the id-swb-pkc-best-cert-path and id-
 swb-pkc-revocation-info wantBacks.

 SCVP provides two methods for a client to obtain multiple
 certification paths for a certificate. The client could use
 serverContextInfo to request one path at a time (see Section 3.2.6).
 After obtaining each path, the client could submit the
 serverContextInfo from the previous request to obtain another path
 until either the client found a suitable path or the server indicated
 (by not returning a serverContextInfo) that no more paths were
 available. Alternatively, the client could send a single request
 with an id-swb-pkc-all-cert-paths wantBack, in which case the server
 would return all of the available paths in a single response.

 The server may, at its discretion, limit the number of paths that it
 returns in response to the id-swb-pkc-all-cert-paths. When the
 request includes an id-swb-pkc-all-cert-paths wantBack, the response
 SHOULD NOT include a serverContextInfo.

 For attribute certificates, the following wantBacks are defined in
 this document:

 - id-swb-ac-cert: The attribute certificate that was the subject of
 the request;

 - id-swb-aa-cert-path: The certification path built for the AC
 issuer certificate;

 - id-swb-ac-revocation-info: Proof of revocation status for each
 certificate in the AC issuer certification path; and

 - id-swb-aa-revocation-info: Proof of revocation status for the
 attribute certificate.

 Conforming SCVP server implementations MAY support the attribute
 certificate wantBacks.

 The following wantBack can be used for either public key or attribute
 certificates:

 - id-swb-relayed-responses: Any SCVP responses received by the
 server that were used to generate the response to this query.

 Conforming SCVP servers MAY support the id-swb-relayed-responses
 wantBack.

Freeman, et al. Standards Track [Page 18]

RFC 5055 SCVP December 2007

 For these purposes, the following OIDs are defined:

 id-swb OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 18 }

 id-swb-pkc-best-cert-path OBJECT IDENTIFIER ::= { id-swb 1 }
 id-swb-pkc-revocation-info OBJECT IDENTIFIER ::= { id-swb 2 }
 id-swb-pkc-public-key-info OBJECT IDENTIFIER ::= { id-swb 4 }
 id-swb-aa-cert-path OBJECT IDENTIFIER ::= { id-swb 5 }
 id-swb-aa-revocation-info OBJECT IDENTIFIER ::= { id-swb 6 }
 id-swb-ac-revocation-info OBJECT IDENTIFIER ::= { id-swb 7 }
 id-swb-relayed-responses OBJECT IDENTIFIER ::= { id-swb 9 }
 id-swb-pkc-cert OBJECT IDENTIFIER ::= { id-swb 10}
 id-swb-ac-cert OBJECT IDENTIFIER ::= { id-swb 11}
 id-swb-pkc-all-cert-paths OBJECT IDENTIFIER ::= { id-swb 12}
 id-swb-pkc-ee-revocation-info OBJECT IDENTIFIER ::= { id-swb 13}
 id-swb-pkc-CAs-revocation-info OBJECT IDENTIFIER ::= { id-swb 14}

 Other specifications may define additional wantBacks.

 Conforming client implementations that support delegated path
 validation (DPV) as defined in [RQMTS] SHOULD support assertion of at
 least one wantBack. Conforming client implementations that support
 delegated path discovery (DPD) as defined in [RQMTS] MUST support
 assertion of at least one wantBack. Conforming clients MAY support
 assertion of multiple wantBacks. Conforming clients need not support
 all of the wantBacks defined in this section.

3.2.4. validationPolicy

 The validationPolicy item defines the validation policy that the
 client wants the SCVP server to use during certificate validation.
 If this policy cannot be used for any reason, then the server MUST
 return an error response.

 A validation policy MUST define default values for all parameters
 necessary for processing an SCVP request. For each parameter, a
 validation policy may either allow the client to specify a non-
 default value or forbid the use of a non-default value. If the
 client wishes to use the default values for all of the parameters,
 then the client need only supply a reference to the policy in this
 item. If the client wishes to use non-default values for one or more
 parameters, then the client supplies a reference to the policy plus
 whatever parameters are necessary to complete the request in this
 item. If there are any conflicts between the policy referenced in
 the request and any supplied parameter values in the request, then
 the server MUST return an error response.

Freeman, et al. Standards Track [Page 19]

RFC 5055 SCVP December 2007

 The syntax of the validationPolicy item is:

 ValidationPolicy ::= SEQUENCE {
 validationPolRef ValidationPolRef,
 validationAlg [0] ValidationAlg OPTIONAL,
 userPolicySet [1] SEQUENCE SIZE (1..MAX) OF OBJECT
 IDENTIFIER OPTIONAL,
 inhibitPolicyMapping [2] BOOLEAN OPTIONAL,
 requireExplicitPolicy [3] BOOLEAN OPTIONAL,
 inhibitAnyPolicy [4] BOOLEAN OPTIONAL,
 trustAnchors [5] TrustAnchors OPTIONAL,
 keyUsages [6] SEQUENCE OF KeyUsage OPTIONAL,
 extendedKeyUsages [7] SEQUENCE OF KeyPurposeId OPTIONAL,
 specifiedKeyUsages [8] SEQUENCE OF KeyPurposeId OPTIONAL }

 The validationPolRef item is required, but the remaining items are
 optional. The optional items are used to provide validation policy
 parameters. When the client uses the validation policy’s default
 values for all parameters, all of the optional items are absent.

 At a minimum, conforming SCVP client implementations MUST support the
 validationPolRef item. Conforming client implementations MAY support
 any or all of the optional items in ValidationPolicy.

 Conforming SCVP servers MUST support processing of a ValidationPolicy
 that contains any or all of the optional items.

 The validationAlg item specifies the validation algorithm. The
 userPolicySet item provides an acceptable set of certificate
 policies. The inhibitPolicyMapping item inhibits certificate policy
 mapping during certification path validation. The
 requireExplicitPolicy item requires at least one valid certificate
 policy in the certificate policies extension. The inhibitAnyPolicy
 item indicates whether the anyPolicy certificate policy OID is
 processed or ignored when evaluating certificate policy. The
 trustAnchors item indicates the trust anchors that are acceptable to
 the client. The keyUsages item indicates the technical usage of the
 public key that is to be confirmed by the server as acceptable. The
 extendedKeyUsages item indicates the application-specific usage of
 the public key that is to be confirmed by the server as acceptable.
 The syntax and semantics of each of these items are discussed in the
 following sections.

3.2.4.1. validationPolRef

 The reference to the validation policy is an OID that the client and
 server have agreed represents a particular validation policy.

Freeman, et al. Standards Track [Page 20]

RFC 5055 SCVP December 2007

 The syntax of the validationPolRef item is:

 ValidationPolRef::= SEQUENCE {
 valPolId OBJECT IDENTIFIER,
 valPolParams ANY DEFINED BY valPolId OPTIONAL }

 Where a validation policy supports additional policy-specific
 parameter settings, these values are specified using the valPolParams
 item. The syntax and semantics of the parameters structure are
 defined by the object identifier encoded as the valPolId. Where a
 validation policy has no parameters, such as the default validation
 policy (see Section 3.2.4.1.1), this item MUST be omitted.

 Parameters specified in this item are independent of the validation
 algorithm and the validation algorithm’s parameters (see Section
 3.2.4.2). For example, a server may support a validation policy
 where it validates a certificate using the name validation algorithm
 and also makes a determination regarding the creditworthiness of the
 subject. In this case, the validation policy parameters could be
 used to specify the value of the transaction. The validation
 algorithm parameters are used to specify the application identifier
 and name for the name validation algorithm.

 Conforming SCVP client implementations MUST support specification of
 a validation policy. Conforming SCVP client implementations MAY be
 able to specify parameters for a validation policy. Conforming SCVP
 server implementations MUST be able to process valPolId and MAY be
 able to process valPolParams.

3.2.4.1.1. Default Validation Policy

 The client can request the SCVP server’s default validation policy or
 another validation policy. The default validation policy corresponds
 to standard certification path processing as defined in [PKIX-1] with
 server-chosen default values (e.g., with a server-determined policy
 set and trust anchors). The default values can be distributed out of
 band or using the policy request mechanism (see Section 5). This
 mechanism permits the deployment of an SCVP server without obtaining
 a new object identifier.

 The object identifier that identifies the default validation policy
 is:

 id-svp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 19 }

 id-svp-defaultValPolicy OBJECT IDENTIFIER ::= { id-svp 1 }

Freeman, et al. Standards Track [Page 21]

RFC 5055 SCVP December 2007

 The default validation policy MUST use the basic validation algorithm
 as its default validation algorithm (see Section 3.2.4.2.1), and has
 no validation policy parameters (see Section 3.2.4.1).

 When using the default validation policy, the client can override any
 of the default parameter values by supplying a specific value in the
 request. The SCVP server MUST make use of the provided parameter
 values or return an error response.

 Conforming implementations of SCVP servers MUST support the default
 policy. However, an SCVP server may be configured to send an error
 response to all requests using the default policy to meet local
 security requirements.

3.2.4.2. validationAlg

 The optional validationAlg item defines the validation algorithm to
 be used by the SCVP server during certificate validation. The value
 of this item can be determined by agreement between the client and
 the server. The validation algorithm is represented by an object
 identifier.

 The syntax of the validationAlg item is:

 ValidationAlg ::= SEQUENCE {
 valAlgId OBJECT IDENTIFIER,
 parameters ANY DEFINED BY valAlgId OPTIONAL }

 The following section specifies the basic validation algorithm and
 the name validation algorithm.

 SCVP servers MUST recognize and support both validation algorithms
 defined in this section. SCVP clients that support explicit
 assertion of the validation algorithm MUST support the basic
 validation algorithm and SHOULD support the name validation
 algorithm. Other validation algorithms can be specified in other
 documents for use with specific applications. SCVP clients and
 servers MAY support any such validation algorithms.

3.2.4.2.1. Basic Validation Algorithm

 The client can request use of the SCVP basic validation algorithm or
 another algorithm. For identity certificates, the basic validation
 algorithm MUST implement the certification path validation algorithm
 as defined in Section 6 of [PKIX-1]. For attribute certificates, the
 basic validation algorithm MUST implement certification path
 validation as defined in Section 5 of [PKIX-AC]. Other validation
 algorithms MAY implement functions over and above those in the basic

Freeman, et al. Standards Track [Page 22]

RFC 5055 SCVP December 2007

 algorithm, but validation algorithms MUST generate results compliant
 with the basic validation algorithm. That is, none of the validation
 requirements in the basic algorithm may be omitted from any newly
 defined validation algorithms. However, other validation algorithms
 MAY reject paths that are valid using the basic validation algorithm.
 The object identifier to identify the basic validation algorithm is:

 id-svp-basicValAlg OBJECT IDENTIFIER ::= { id-svp 3 }

 When id-svp-basicValAlg appears in valAlgId, the parameters item MUST
 be absent.

3.2.4.2.2. Basic Validation Algorithm Errors

 The following errors are defined for the basic validation algorithm
 for inclusion in the validationErrors item in the response (see
 Section 4.9.6). These errors can be used by any other validation
 algorithm since all validation algorithms MUST implement the
 functionality of the basic validation algorithm.

 id-bvae OBJECT IDENTIFIER ::= id-svp-basicValAlg

 id-bvae-expired OBJECT IDENTIFIER ::= { id-bvae 1 }
 id-bvae-not-yet-valid OBJECT IDENTIFIER ::= { id-bvae 2 }
 id-bvae-wrongTrustAnchor OBJECT IDENTIFIER ::= { id-bvae 3 }
 id-bvae-noValidCertPath OBJECT IDENTIFIER ::= { id-bvae 4 }
 id-bvae-revoked OBJECT IDENTIFIER ::= { id-bvae 5 }
 id-bvae-invalidKeyPurpose OBJECT IDENTIFIER ::= { id-bvae 9 }
 id-bvae-invalidKeyUsage OBJECT IDENTIFIER ::= { id-bvae 10 }
 id-bvae-invalidCertPolicy OBJECT IDENTIFIER ::= { id-bvae 11 }

 The id-bvae-expired value means that the validation time used for the
 request was later than the notAfter time in the end certificate (the
 certificate specified in the queriedCerts item).

 The id-bvae-not-yet-valid value means that the validation time used
 for the request was before the notBefore time in the end certificate.

 The id-bvae-wrongTrustAnchor value means that a certification path
 could not be constructed for the client-specified trust anchor(s),
 but a path exists for one of the trust anchors specified in the
 server’s default validation policy.

 The id-bvae-noValidCertPath value means that the server could not
 construct a sequence of intermediate certificates between the trust
 anchor and the target certificate that satisfied the request.

Freeman, et al. Standards Track [Page 23]

RFC 5055 SCVP December 2007

 The id-bvae-revoked value means that the end certificate has been
 revoked.

 The id-bvae-invalidKeyPurpose value means that the extended key usage
 extension ([PKIX-1], Section 4.2.1.13) in the end certificate does
 not satisfy the validation policy.

 The id-bvae-invalidKeyUsage value means that the keyUsage extension
 ([PKIX-1], Section 4.2.1.3) in the end certificate does not satisfy
 the validation policy. For example, the keyUsage extension in the
 certificate may assert only the keyEncipherment bit, but the
 validation policy specifies in the keyUsages item that
 digitalSignature is required.

 The id-bvae-invalidCertPolicy value means that the path is not valid
 under any of the policies specified in the user policy set and
 explicit policies are required. That is, the valid_policy_tree is
 NULL and the explicit_policy variable is zero ([PKIX-1], Section
 6.1.5).

3.2.4.2.3. Name Validation Algorithm

 The name validation algorithm allows the client to specify one or
 more subject names that MUST appear in the end certificate in
 addition to the requirements specified for the basic validation
 algorithm. The name validation algorithm allows the client to supply
 an application identifier and a name to the server. The application
 identifier defines the name matching rules to use in comparing the
 name supplied in the request with the names in the certificate.

 id-svp-nameValAlg OBJECT IDENTIFIER ::= { id-svp 2 }

 When the id-svp-nameValAlg appears as a valAlgId, the parameters MUST
 use the NameValidationAlgParms syntax:

 NameValidationAlgParms ::= SEQUENCE {
 nameCompAlgId OBJECT IDENTIFIER,
 validationNames GeneralNames }

 GeneralNames is defined in [PKIX-1].

 If more than one name is supplied in the validationNames value, all
 names MUST be of the same type. The certificate must contain a
 matching name for each of the names supplied in validationNames
 according to the name matching rules associated with the
 nameCompAlgId. This specification defines three sets of name
 matching rules.

Freeman, et al. Standards Track [Page 24]

RFC 5055 SCVP December 2007

 If the nameCompAlgId supplied in the request is id-nva-dnCompAlg,
 then GeneralNames supplied in the request MUST be a directoryName,
 and the matching rules to be used are defined in [PKIX-1]. The
 certificate must contain a matching name in either the subject field
 or a directoryName in the subjectAltName extension. This
 specification defines the OID for id-nva-dnCompAlg as follows:

 id-nva-dnCompAlg OBJECT IDENTIFIER ::= { id-svp 4 }

 If the nameCompAlgId supplied in the request is id-kp-serverAuth
 [PKIX-1], then GeneralNames supplied in the request MUST be a
 dNSName, and the matching rules to be used are defined in [PKIX-1].

 If a subjectAltName extension is present and includes one or more
 names of type dNSName, a match in any one of the set is considered
 acceptable. If the subjectAltName extension is omitted, or does not
 include any names of type dNSName, the (most specific) Common Name
 field in the subject field of the certificate MUST be used.

 Names may contain the wildcard character *, which is considered to
 match any single domain name component. That is, *.a.com matches
 foo.a.com but not bar.foo.a.com.

 If the nameCompAlgId supplied in the request is id-kp-mailProtection
 [PKIX-1], then GeneralNames supplied in the request MUST be an
 rfc822Name, and the matching rules are defined in [SMIME-CERT].

 Conforming SCVP servers MUST support the name validation algorithm
 and the matching rules associated with id-nva-dnCompAlg, id-kp-
 serverAuth, and id-kp-mailProtection. SCVP servers MAY support other
 name matching rules.

3.2.4.2.4. Name Validation Algorithm Errors

 The following errors are defined for the name validation algorithm:

 id-nvae OBJECT IDENTIFIER ::= id-svp-nameValAlg

 id-nvae-name-mismatch OBJECT IDENTIFIER ::= { id-nvae 1 }
 id-nvae-no-name OBJECT IDENTIFIER ::= { id-nvae 2 }
 id-nvae-unknown-alg OBJECT IDENTIFIER ::= { id-nvae 3 }
 id-nvae-bad-name OBJECT IDENTIFIER ::= { id-nvae 4 }
 id-nvae-bad-name-type OBJECT IDENTIFIER ::= { id-nvae 5 }
 id-nvae-mixed-names OBJECT IDENTIFIER ::= { id-nvae 6 }

 The id-nvae-name-mismatch value means the client supplied a name with
 the request, which the server recognized and the server found a
 corresponding name type in the certificate, but was unable to find a

Freeman, et al. Standards Track [Page 25]

RFC 5055 SCVP December 2007

 match to the name supplied. For example, the client supplied a DNS
 name of example1.com, and the certificate contained a DNS name of
 example.com.

 The id-nvae-no-name value means the client supplied a name with the
 request, which the server recognized, but the server could not find
 the corresponding name type in the certificate. For example, the
 client supplied a DNS name of example1.com, and the certificate only
 contained a rfc822Name of user@example.com.

 The id-nvae-unknown-alg value means the client supplied a
 nameCompAlgId that the server does not recognize.

 The id-nvae-bad-name value means the client supplied either an empty
 or malformed name in the request.

 The id-nvae-bad-name-type value means the client supplied an
 inappropriate name type for the application identifier. For example,
 the client specified a nameCompAlgId of id-kp-serverAuth, and an
 rfc822Name of user@example.com.

 The id-nvae-mixed-names value means the client supplied multiple
 names in the request of different types.

3.2.4.3. userPolicySet

 The userPolicySet item specifies a list of certificate policy
 identifiers that the SCVP server MUST use when constructing and
 validating a certification path. The userPolicySet item specifies
 the user-initial-policy-set as defined in Section 6 of [PKIX-1]. A
 userPolicySet containing the anyPolicy OID indicates a user-initial-
 policy-set of any-policy.

 SCVP clients SHOULD support the userPolicySet item in requests, and
 SCVP servers MUST support the userPolicySet item in requests.

3.2.4.4. inhibitPolicyMapping

 The inhibitPolicyMapping item specifies an input to the certification
 path validation algorithm, and it controls whether policy mapping is
 allowed during certification path validation (see [PKIX-1], Section
 6.1.1). If the client wants the server to inhibit policy mapping,
 inhibitPolicyMapping is set to TRUE in the request. SCVP clients MAY
 support inhibiting policy mapping. SCVP servers SHOULD support
 inhibiting policy mapping.

Freeman, et al. Standards Track [Page 26]

RFC 5055 SCVP December 2007

3.2.4.5. requireExplicitPolicy

 The requireExplicitPolicy item specifies an input to the
 certification path validation algorithm, and it controls whether
 there must be at least one valid policy in the certificate policies
 extension (see [PKIX-1], Section 6.1.1). If the client wants the
 server to require at least one policy, requireExplicitPolicy is set
 to TRUE in the request.

 SCVP clients MAY support requiring explicit policies. SCVP servers
 SHOULD support requiring explicit policies.

3.2.4.6. inhibitAnyPolicy

 The inhibitAnyPolicy item specifies an input to the certification
 path validation algorithm (see [PKIX-1], Section 6.1.1), and it
 controls whether the anyPolicy OID is processed or ignored when
 evaluating certificate policy. If the client wants the server to
 ignore the anyPolicy OID, inhibitAnyPolicy MUST be set to TRUE in the
 request.

 SCVP clients MAY support ignoring the anyPolicy OID. SCVP servers
 SHOULD support ignoring the anyPolicy OID.

3.2.4.7. trustAnchors

 The trustAnchors item specifies the trust anchors at which the
 certification path must terminate if the path is to be considered
 valid by the SCVP server for the request. If a trustAnchors item is
 present, the server MUST NOT consider any certification paths ending
 in other trust anchors as valid.

 The TrustAnchors type contains one or more trust anchor
 specifications. A certificate reference can be used to identify the
 trust anchor by certificate hash and distinguished name with serial
 number. Alternatively, trust anchors can be provided directly. The
 order of trust anchor specifications within the sequence is not
 important. Any CA certificate that meets the requirements of
 [PKIX-1] for signing certificates can be provided as a trust anchor.
 If a trust anchor is supplied that does not meet these requirements,
 the server MUST return an error response.

 The trust anchor itself, regardless of its form, MUST NOT be included
 in any certification path returned by the SCVP server.

 TrustAnchors has the following syntax:

 TrustAnchors ::= SEQUENCE SIZE (1..MAX) OF PKCReference

Freeman, et al. Standards Track [Page 27]

RFC 5055 SCVP December 2007

 SCVP servers MUST support trustAnchors. SCVP clients SHOULD support
 trustAnchors.

3.2.4.8. keyUsages

 The key usage extension ([PKIX-1], Section 4.2.1.3) in the
 certificate defines the technical purpose (such as encipherment,
 signature, and CRL signing) of the key contained in the certificate.
 If the client wishes to confirm the technical usage, then it can
 communicate the usage it wants to validate by the same structure
 using the same semantics as defined in [PKIX-1]. For example, if the
 client obtained the certificate in the context of a digital
 signature, it can confirm this use by including a keyUsage structure
 with the digital signature bit set.

 If the keyUsages item is present and contains an empty sequence, it
 indicates that the client does not require any particular key usage.

 If the keyUsages item contains one or more keyUsage definitions, then
 the certificate MUST satisfy at least one of the specified keyUsage
 definitions. If the client is willing to accept multiple
 possibilities, then the client passes in a sequence of possible
 patterns. Each keyUsage can contain a set of one or more bits set in
 the request, all bits MUST be set in the certificate to match against
 an instance of the keyUsage in the SCVP request. The certificate key
 usage extension may contain more usages than requested. For example,
 if a client wishes to check for either digital signature or non-
 repudiation, then the client provides two keyUsage values, one with
 digital signature set and the other with non-repudiation set. If the
 key usage extension is absent from the certificate, the certificate
 MUST be considered good for all usages and therefore any pattern in
 the SCVP request will match.

 SCVP clients SHOULD support keyUsages, and SCVP servers MUST support
 keyUsages.

3.2.4.9. extendedKeyUsages

 The extended key usage extension ([PKIX-1], Section 4.2.1.13) defines
 more specific technical purposes, in addition to, or in place of, the
 purposes indicated in the key usage extension, for which the
 certified public key may be used. If the client will accept
 certificates that are consistent with a particular value (or values)
 in the extended key usage extension, then it can communicate the
 appropriate usages using the same semantics as defined in [PKIX-1].

Freeman, et al. Standards Track [Page 28]

RFC 5055 SCVP December 2007

 For example, if the client obtained the certificate in the context of
 a Transport Layer Security (TLS) server, it can confirm the
 certificate is consistent with this usage by including the extended
 key usage structure with the id-kp-serverAuth object identifier.

 If the extension is absent, or is present and asserts the
 anyExtendedKeyUsage OID, then all usages specified in the request are
 a match. If the extension is present and does not assert the
 anyExtendedKeyUsage OID, all usages in the request MUST be present in
 the certificate. The certificate extension may contain more usages
 than requested.

 Where the client does not require any particular extended key usage,
 the client can specify an empty SEQUENCE. This may be used to
 override extended key usage requirements imposed in the validation
 policy specified by valPolId.

 SCVP clients SHOULD support extendedKeyUsages, and SCVP servers MUST
 support extendedKeyUsages.

3.2.4.10. specifiedKeyUsages

 The extended key usage extension ([PKIX-1], Section 4.2.1.13) defines
 more specific technical purposes, in addition to or in place of the
 purposes indicated in the key usage extension, for which the
 certified public key may be used. If the client requires that a
 particular value (or values) appear in the extended key usage
 extension, then it can specify the required usage(s) using the same
 semantics as defined in [PKIX-1]. For example, if the client
 obtained the certificate in the context of a TLS server, it might
 require that the server certificate include the extended key usage
 structure with the id-kp-serverAuth object identifier. In this case,
 the client would include a specifiedKeyUsages item in the request and
 assert the id-kp-serverAuth object identifier.

 If one or more specified usages are included in the request, the
 certificate MUST contain the extended key usage extension, and all
 usages specified in the request MUST be present in the certificate
 extension. The certificate extension may contain more usages than
 specified in the request. Specified key usages are not satisfied by
 the presence of the anyExtendedKeyUsage OID.

 Where the client does not require any particular extended key usage,
 the client can specify an empty SEQUENCE. This may be used to
 override specified key usage requirements imposed in the validation
 policy specified by valPolId.

Freeman, et al. Standards Track [Page 29]

RFC 5055 SCVP December 2007

 SCVP clients SHOULD support specifiedKeyUsages, and SCVP servers MUST
 support specifiedKeyUsages.

3.2.5. responseFlags

 The optional responseFlags item allows the client to indicate which
 optional features in the CVResponse it wants the server to include.
 If the default values for all of the flags are used, then the
 responseFlags item MUST NOT be included in the request.

 The syntax of the responseFlags item is:

 ResponseFlags ::= SEQUENCE {
 fullRequestInResponse [0] BOOLEAN DEFAULT FALSE,
 responseValidationPolByRef [1] BOOLEAN DEFAULT TRUE,
 protectResponse [2] BOOLEAN DEFAULT TRUE,
 cachedResponse [3] BOOLEAN DEFAULT TRUE }

 Each of the response flags is described in the following sections.

3.2.5.1. fullRequestInResponse

 By default, the server includes a hash of the request in non-cached
 responses to allow the client to identify the response. If the
 client wants the server to include the full request in the non-cached
 response, fullRequestInResponse is set to TRUE. The main reason a
 client would request the server to include the full request in the
 response is to archive the request-response exchange in a single
 object. That is, the client wants to archive a single object that
 includes both request and response.

 SCVP clients and servers MUST support the default behavior. SCVP
 clients MAY support requesting and processing the full request. SCVP
 servers SHOULD support returning the full request.

3.2.5.2. responseValidationPolByRef

 The responseValidationPolByRef item controls whether the response
 includes just a reference to the policy or a reference to the policy
 plus all the parameters by value of the policy used to process the
 request. The response MUST contain a reference to the validation
 policy. If the client wants the validation policy parameters to be
 included by value also, then responseValidationPolByRef is set to
 FALSE. The main reason a client would request the server to include
 validation policy to be included by value is to archive the request-
 response exchange in a single object. That is, the client wants to
 archive the CVResponse and have it include every aspect of the
 validation policy.

Freeman, et al. Standards Track [Page 30]

RFC 5055 SCVP December 2007

 SCVP clients MUST support requesting and processing the validation
 policy by reference, and SCVP servers MUST support returning the
 validation policy by reference. SCVP clients MAY support requesting
 and processing the validation policy by values. SVCP servers SHOULD
 support returning the validation policy by values.

3.2.5.3. protectResponse

 The protectResponse item indicates whether the client requires the
 server to protect the response. If the client is performing full
 certification path validation on the response and it is not concerned
 about the source of the response, then the client does not benefit
 from a digital signature or MAC on the response. In this case, the
 client can indicate to the server that protecting the message is
 unnecessary. However, the server is always permitted to return a
 protected response.

 SCVP clients that support delegated path discovery (DPD) as defined
 in [RQMTS] MUST support setting this value to FALSE.

 SCVP clients that support delegated path validation (DPV) as defined
 in [RQMTS] require an authenticated response. Unless a protected
 transport mechanism (such as TLS) is used, such clients MUST always
 set this value to TRUE or omit the responseFlags item entirely, which
 requires the server to return a protected response.

 SCVP servers MUST support returning protected responses, and SCVP
 servers SHOULD support returning unprotected responses. Based on
 local policy, the server can be configured to return protected or
 unprotected responses if this value is set to FALSE. If, based on
 local policy, the server is unable to return protected responses,
 then the server MUST return an error if this value is set to TRUE.

3.2.5.4. cachedResponse

 The cachedResponse item indicates whether the client will accept a
 cached response. To enhance performance and limit the exposure of
 signing keys, an SCVP service may be designed to cache responses
 until new revocation information is expected. Where cachedResponse
 is set to TRUE, the client will accept a previously cached response.

 Clients may insist on creation of a fresh response to protect against
 a replay attack and ensure that information is up to date. Where
 cachedResponse is FALSE, the client will not accept a cached
 response. To ensure that a response is fresh, the client MUST also
 include the requestNonce as defined in Section 3.4.

Freeman, et al. Standards Track [Page 31]

RFC 5055 SCVP December 2007

 Servers MUST process the cachedResponse flag. Where cachedResponse
 is FALSE, servers that cannot produce fresh responses MUST reply with
 an error message. Servers MAY choose to provide fresh responses even
 where cachedResponse is set to TRUE.

3.2.6. serverContextInfo

 The optional serverContextInfo item, if present, contains context
 from a previous request-response exchange with the same SCVP server.
 It allows the server to return more than one certification path for
 the same certificate to the client. For example, if a server
 constructs a particular certification path for a certificate, but the
 client finds it unacceptable, the client can then send the same query
 back to the server with the serverContextInfo from the first
 response, and the server will be able to provide a different
 certification path (if another one can be found).

 Contents of the serverContextInfo are opaque to the SCVP client.
 That is, the client only knows that it needs to return the value
 provided by the server with the subsequent request to get a different
 certification path. Note that the subsequent query needs to be
 identical to the previous query with the exception of the following:

 - requestNonce,

 - serverContextInfo, and

 - the client’s digital signature or MAC on the request.

 SCVP clients MAY support serverContextInfo, and SCVP servers SHOULD
 support serverContextInfo.

3.2.7. validationTime

 The optional validationTime item, if present, tells the date and time
 relative to which the SCVP client wants the server to perform the
 checks. If the validationTime is not present, the server MUST
 perform the validation using the date and time at which the server
 processes the request. If the validationTime is present, it MUST be
 encoded as GeneralizedTime. The validationTime provided MUST be a
 retrospective time since the server can only perform a validity check
 using the current time (default) or previous time. A server can
 ignore the validationTime provided in the request if the time is
 within the clock skew of the server’s current time.

Freeman, et al. Standards Track [Page 32]

RFC 5055 SCVP December 2007

 The revocation status information is obtained with respect to the
 validation time. When specifying a validation time other than the
 current time, the validation time should not necessarily be identical
 to the time when the private key was used. The validation time
 specified by the client may be adjusted to compensate for:

 1) time for the end-entity to realize that its private key has been,
 or could possibly be, compromised, and/or

 2) time for the end-entity to report the key compromise, and/or

 3) time for the revocation authority to process the revocation
 request from the end-entity, and/or

 4) time for the revocation authority to update and distribute the
 revocation status information.

 GeneralizedTime values MUST be expressed in Universal Coordinated
 Time (UTC) (which is also known as Greenwich Mean Time and Zulu time)
 and MUST include seconds (i.e., times are YYYYMMDDHHMMSSZ), even when
 the number of seconds is zero. GeneralizedTime values MUST NOT
 include fractional seconds.

 The information in the corresponding CertReply item in the response
 MUST be formatted as if the server created the response at the time
 indicated in the validationTime. However, if the server does not
 have appropriate historical information, the server MUST return an
 error response.

 SCVP servers MUST apply a clock skew to the validation time to allow
 for minor time synchronization errors. The default value is 10
 minutes. If the server uses a value other than the default, it MUST
 include the clock skew value in the validation policy response.

 SCVP clients MAY support validationTime other than the current time.
 SCVP servers MUST support using its current time, and SHOULD support
 the client setting the validationTime in the request.

3.2.8. intermediateCerts

 The optional intermediateCerts item may help the SCVP server create
 valid certification paths. The intermediateCerts item, when present,
 provides certificates that the server MAY use when forming a
 certification path. When building certification paths, the server
 MAY use the certificates in the intermediateCerts item in addition to
 any other certificates that the server can access. When present, the
 intermediateCerts item MUST contain at least one certificate, and

Freeman, et al. Standards Track [Page 33]

RFC 5055 SCVP December 2007

 the intermediateCerts item MUST be structured as a CertBundle. The
 certificates in the intermediateCerts item MUST NOT be considered as
 valid by the server just because they are present in this item.

 The CertBundle type contains one or more certificates. The order of
 the entries in the bundle is not important. CertBundle has the
 following syntax:

 CertBundle ::= SEQUENCE SIZE (1..MAX) OF Certificate

 SCVP clients SHOULD support intermediateCerts, and SCVP servers MUST
 support intermediateCerts.

3.2.9. revInfos

 The optional revInfos item specifies revocation information such as
 CRLs, delta CRLs [PKIX-1], and OCSP responses [OCSP] that the SCVP
 server MAY use when validating certification paths. The purpose of
 the revInfos item is to provide revocation information to which the
 server might not otherwise have access, such as an OCSP response that
 the client received along with the certificate. Note that the
 information in the revInfos item might not be used by the server.
 For example, the revocation information might be associated with
 certificates that the server does not use in the certification path
 that it constructs.

 Clients SHOULD be courteous to the SCVP server by separating CRLs and
 delta CRLs. However, since the two share a common syntax, SCVP
 servers SHOULD accept delta CRLs even if they are identified as
 regular CRLs by the SCVP client.

 CRLs, delta CRLs, and OCSP responses can be provided as revocation
 information. If needed, additional object identifiers can be
 assigned for additional revocation information types in the future.

 The revInfos item uses the RevocationInfos type, which has the
 following syntax:

 RevocationInfos ::= SEQUENCE SIZE (1..MAX) OF RevocationInfo

 RevocationInfo ::= CHOICE {
 crl [0] CertificateList,
 delta-crl [1] CertificateList,
 ocsp [2] OCSPResponse,
 other [3] OtherRevInfo }

Freeman, et al. Standards Track [Page 34]

RFC 5055 SCVP December 2007

 OtherRevInfo ::= SEQUENCE {
 riType OBJECT IDENTIFIER,
 riValue ANY DEFINED BY riType }

3.2.10. producedAt

 The client MAY allow the server to use a cached SCVP response. When
 doing so, the client MAY use the producedAt item to express
 requirements on the freshness of the cached response. The producedAt
 item tells the earliest date and time at which an acceptable cached
 response could have been produced. The producedAt item represents
 the date and time in UTC, using the GeneralizedTime type. The value
 in the producedAt item is independent of the validation time.

 GeneralizedTime value MUST be expressed in UTC, as defined in Section
 3.2.7.

 SCVP clients MAY support using producedAt values in the request.
 SCVP servers MAY support the producedAt values in the request. SCVP
 servers that support cached responses SHOULD support the producedAt
 value in requests.

3.2.11. queryExtensions

 The optional queryExtensions item contains extensions. If present,
 each extension in the sequence extends the query. This specification
 does not define any extensions; the facility is provided to allow
 future specifications to extend SCVP. The syntax for Extensions is
 imported from [PKIX-1]. The queryExtensions item, when present, MUST
 contain a sequence of Extension items, and each of the extensions
 MUST contain extnID, critical, and extnValue items. Each of these is
 described in the following sections.

3.2.11.1. extnID

 The extnID item is an identifier for the extension. It contains the
 object identifier that names the extension.

3.2.11.2. critical

 The critical item is a BOOLEAN. Each extension is designated as
 either critical (with a value of TRUE) or non-critical (with a value
 of FALSE). By default, the extension is non-critical. An SCVP
 server MUST reject the query if it encounters a critical extension
 that it does not recognize; however, a non-critical extension MAY be
 ignored if it is not recognized, but MUST be processed if it is
 recognized.

Freeman, et al. Standards Track [Page 35]

RFC 5055 SCVP December 2007

3.2.11.3. extnValue

 The extnValue item contains an OCTET STRING. Within the OCTET STRING
 is the extension value. An ASN.1 type is specified for each
 extension, identified by the associated extnID object identifier.

3.3. requestorRef

 The optional requestorRef item contains a list of names identifying
 SCVP servers, and it is intended for use in environments where SCVP
 relay is employed. Although requestorRef is encoded as a SEQUENCE,
 no order is implied. The requestorRef item is used to detect looping
 in some configurations. The value and use of requestorRef are
 described in Section 7.

 Conforming SCVP clients MAY support specification of the requestorRef
 value. Conforming SCVP server implementations MUST process the
 requestorRef value if present. If the SCVP client includes a
 requestorRef value in the request, then the SCVP server MUST return
 the same value in a non-cached response. The SCVP server MAY omit
 the requestorRef value from cached SCVP responses.

 The requestorRef item MUST be a sequence of GeneralName. No
 provisions are made to ensure uniqueness of the requestorRef
 GeneralName values.

3.4. requestNonce

 The optional requestNonce item contains a request identifier
 generated by the SCVP client. If the client includes a requestNonce
 value in the request, it is expressing a preference that the SCVP
 server SHOULD return a non-cached response. If the server returns a
 non-cached response, it MUST include the value of requestNonce from
 the request in the response as the respNonce item; however, the
 server MAY return a cached response which MUST NOT have a respNonce.

 SCVP clients that insist on creation of a fresh response (e.g., to
 protect against a replay attack or ensure information is up to date)
 MUST support requestNonce. Conforming SCVP server implementations
 MUST process the requestNonce value if present.

 If the client includes a requestNonce and also sets the
 cachedResponse flag to FALSE as described in Section 3.2.5.4, the
 client is indicating that the SCVP server MUST return either a non-
 cached response including the respNonce or an error response. The
 client SHOULD include a requestNonce item in every request to prevent

Freeman, et al. Standards Track [Page 36]

RFC 5055 SCVP December 2007

 an attacker from acting as a man-in-the-middle by replaying old
 responses from the server. The requestNonce value SHOULD change with
 every request sent by the client.

 The client MUST NOT set the cachedResponse flag to FALSE without also
 including a requestNonce. A server receiving such a request SHOULD
 return an invalidRequest error response.

 The requestNonce item, if present, MUST be an OCTET STRING that was
 generated exclusively for this request.

3.5. requestorName

 The optional requestorName item is used by the client to include an
 identifier in the request. The client MAY include this information
 for the DPV server to copy into the response.

 Conforming SCVP clients MAY support specification of this item in
 requests. SCVP servers MUST be able to process requests that include
 this item.

3.6. responderName

 The optional responderName item is used by the client to indicate the
 identity of the SCVP server that the client expects to sign the SCVP
 response if the response is digitally signed. The responderName item
 SHOULD only be included if:

 1. the request is either unprotected or digitally signed (i.e., is
 not protected using a MAC), and

 2. the responseFlags item is either absent or present with the
 protectResponse set to TRUE.

 Conforming SCVP clients MAY support specification of this item in
 requests. SCVP servers MUST be able to process requests that include
 this item. SCVP servers that maintain a single private key for
 signing SCVP responses or that are unable to return digitally signed
 responses MAY ignore the value in this item. SCVP servers that
 maintain more than one private key for signing SCVP responses SHOULD
 either (a) digitally sign the response using a private key that
 corresponds to a certificate that includes the name specified in
 responderName in either subject field or subjectAltName extension or
 (b) return a error indicating that the server does not possess a
 certificate that asserts the specified name.

Freeman, et al. Standards Track [Page 37]

RFC 5055 SCVP December 2007

3.7. requestExtensions

 The OPTIONAL requestExtensions item contains extensions. If present,
 each extension in the sequence extends the request. This
 specification does not define any extensions; the facility is
 provided to allow future specifications to extend SCVP. The syntax
 for Extensions is imported from [PKIX-1]. The requestExtensions
 item, when present, MUST contain a sequence of Extension items, and
 each of the extensions MUST contain extnID, critical, and extnValue
 items. Each of these is described in the following sections.

3.7.1. extnID

 The extnID item is an identifier for the extension. It contains the
 object identifier that names the extension.

3.7.2. critical

 The critical item is a BOOLEAN. Each extension is designated as
 either critical (with a value of TRUE) or non-critical (with a value
 of FALSE). By default, the extension is non-critical. An SCVP
 server MUST reject the query if it encounters a critical extension it
 does not recognize. A non-critical extension MAY be ignored if it is
 not recognized, but MUST be processed if it is recognized.

3.7.3. extnValue

 The extnValue item contains an OCTET STRING. Within the OCTET STRING
 is the extension value. An ASN.1 type is specified for each
 extension, identified by the associated extnID object identifier.

3.8. signatureAlg

 The signatureAlg item contains an AlgorithmIdentifier indicating
 which algorithm the server should use to sign the response message.
 The signatureAlg item SHOULD only be included if:

 1. the request is either unprotected or digitally signed (i.e., is
 not protected using a MAC), and

 2. the responseFlags item is either absent or present with the
 protectResponse set to TRUE.

 If included, the signatureAlg item SHOULD specify one of the
 signature algorithms specified in the signatureGeneration item of the
 server’s validation policy response message.

Freeman, et al. Standards Track [Page 38]

RFC 5055 SCVP December 2007

 SCVP servers MUST be able to process requests that include this item.
 If the server is returning a digitally signed response to this
 message, then:

 1. If the signatureAlg item is present and specifies an algorithm
 that is included in the signatureGeneration item of the server’s
 validation policy response message, the server MUST sign the
 response using the signature algorithm specified in signatureAlg.

 2. Otherwise, if the signatureAlg item is absent or is present but
 specifies an algorithm that is not supported by the server, the
 server MUST sign the response using the server’s default signature
 algorithm as specified in the signatureGeneration item of the
 server’s validation policy response message.

3.9. hashAlg

 The hashAlg item contains an object identifier indicating which hash
 algorithm the server should use to compute the hash value for the
 requestHash item in the response. SCVP clients SHOULD NOT include
 this item if fullRequestInResponse is set to TRUE. If included, the
 hashAlg item SHOULD specify one of the hash algorithms specified in
 the hashAlgorithms item of the server’s validation policy response
 message.

 SCVP servers MUST be able to process requests that include this item.
 If the server is returning a response to this message that includes a
 requestHash, then:

 1. If the hashAlg item is present and specifies an algorithm that is
 included in the hashAlgorithms item of the server’s validation
 policy response message, the server MUST use the algorithm
 specified in hashAlg to compute the requestHash.

 2. Otherwise, if the hashAlg item is absent or is present but
 specifies an algorithm that is not supported by the server, the
 server MUST compute the requestHash using the server’s default
 hash algorithm as specified in the hashAlgorithms item of the
 server’s validation policy response message.

3.10. requestorText

 SCVP clients MAY use the requestorText item to provide text for
 inclusion in the corresponding response. For example, this field may
 describe the nature or reason for the request.

Freeman, et al. Standards Track [Page 39]

RFC 5055 SCVP December 2007

 Conforming SCVP client implementations MAY support inclusion of this
 item in requests. Conforming SCVP server implementations MUST accept
 requests that include this item. When generating non-cached
 responses, conforming SCVP server implementations MUST copy the
 contents of this item into the requestorText item in the
 corresponding response (see Section 4.13).

3.11. SCVP Request Authentication

 It is a matter of local policy what validation policy the server uses
 when authenticating requests. When authenticating protected SCVP
 requests, the SCVP servers SHOULD use the validation algorithm
 defined in Section 6 of [PKIX-1].

 If the certificate used to validate a SignedData validation request
 includes the key usage extension ([PKIX-1], Section 4.2.1.3), it MUST
 have either the digital signature bit set, the non-repudiation bit
 set, or both bits set.

 If the certificate used to validate an AuthenticatedData validation
 request includes the key usage extension, it MUST have the key
 agreement bit set.

 If the certificate used on a validation request contains the extended
 key usage extension ([PKIX-1], Section 4.2.1.13), the server SHALL
 verify that it contains the SCVP client OID, the anyExtendedKeyUsage
 OID, or another OID acceptable to the server. The SCVP client OID is
 defined as follows:

 id-kp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 3 }

 id-kp-scvpClient OBJECT IDENTIFIER ::= { id-kp 16 }

 If a protected request fails to meet the validation policy of the
 server, it MUST be treated as an unauthenticated request.

4. Validation Response

 An SCVP server response to the client MUST be a single CVResponse
 item. When a CVResponse is encapsulated in a MIME body part,
 application/scvp-cv-response MUST be used.

 There are a number of forms of an SCVP response:

 1. A success response to a request that has protectResponse set to
 FALSE. These responses SHOULD NOT be protected by the server.

Freeman, et al. Standards Track [Page 40]

RFC 5055 SCVP December 2007

 2. The server MUST protect all other success responses. If the
 server is unable to return a protected success response due to
 local policy, then it MUST return an error response.

 3. An error response to a request made over a protected transport
 such as TLS. These responses SHOULD NOT be protected by the
 server.

 4. An error response to a request that has protectResponse set to
 FALSE. These responses SHOULD NOT be protected by the server.

 5. An error response to an authenticated request. The server SHOULD
 protect these responses.

 6. An error response to an AuthenticatedData request where MAC is
 valid. The server MUST protect these responses.

 7. All other error responses MUST NOT be protected by the server.

 Successful responses are made when the server has fully complied with
 the request. That is, the server was able to attempt to build a
 certification path using the referenced or supplied validation
 policy, and it was able to comply with all the requested parameters.
 If the server is unable to perform validations using the required
 validation policy or the request contains an unsupported option, then
 the server MUST return an error response.

 For protected requests and responses, SCVP servers MUST support
 SignedData and SHOULD support AuthenticatedData. It is a matter of
 local policy which types are used. Where a protected response is
 required, SCVP servers MUST use SignedData or AuthenticatedData, even
 if the transaction is performed using a protected transport (e.g.,
 TLS).

 If the server is making a protected response to a protected request,
 then the server MUST use the same protection mechanism (SignedData or
 AuthenticatedData) as in the request.

 An overview of the structure used for an unprotected response is
 provided below. Many details are not shown, but the way that SCVP
 makes use of CMS is clearly illustrated.

 ContentInfo {
 contentType id-ct-scvp-certValResponse,
 -- (1.2.840.113549.1.9.16.1.11)
 content CVResponse }

Freeman, et al. Standards Track [Page 41]

RFC 5055 SCVP December 2007

 The protected response consists of a CVResponse encapsulated in
 either a SignedData or an AuthenticatedData, which is in turn
 encapsulated in a ContentInfo. That is, the EncapsulatedContentInfo
 field of either SignedData or AuthenticatedData consists of an
 eContentType field with a value of id-ct-scvp-certValResponse and an
 eContent field that contains a DER-encoded CVResponse.

 The SCVP server MUST include its own certificate in the certificates
 field within SignedData. Other certificates MAY also be included.

 The SCVP server MAY also provide one or more CRLs in the crls field
 within SignedData. The signerInfos field of SignedData MUST include
 exactly one SignerInfo. The SignedData MUST NOT include the
 unsignedAttrs field.

 The signedAttrs field within SignerInfo MUST include the content-type
 and message-digest attributes defined in [CMS], and it SHOULD include
 the signing-certificate attribute as defined in [ESS]. Within the
 signing-certificate attribute, the first certificate identified in
 the sequence of certificate identifiers MUST be the certificate of
 the SCVP server. The inclusion of other certificate identifiers in
 the signing-certificate attribute is OPTIONAL. The inclusion of
 policies in the signing-certificate is OPTIONAL.

 The recipientInfos field of AuthenticatedData MUST include exactly
 one RecipientInfo, which contains information for the client that
 sent the request. The AuthenticatedData MUST NOT include the
 unauthAttrs field.

 The CVResponse item contains the server’s response. The CVResponse
 MUST contain the cvResponseVersion, serverConfigurationID,
 producedAt, and responseStatus items. The CVResponse MAY also
 contain the respValidationPolicy, requestRef, requestorRef,
 requestorName, replyObjects, respNonce, serverContextInfo, and
 cvResponseExtensions items. The replyObjects item MUST contain
 exactly one CertReply item for each certificate requested. The
 requestorRef item MUST be included if the request included a
 requestorRef item and a non-cached response is provided. The
 respNonce item MUST be included if the request included a
 requestNonce item and a non-cached response is provided.

Freeman, et al. Standards Track [Page 42]

RFC 5055 SCVP December 2007

 The CVResponse MUST have the following syntax:

 CVResponse ::= SEQUENCE {
 cvResponseVersion INTEGER,
 serverConfigurationID INTEGER,
 producedAt GeneralizedTime,
 responseStatus ResponseStatus,
 respValidationPolicy [0] RespValidationPolicy OPTIONAL,
 requestRef [1] RequestReference OPTIONAL,
 requestorRef [2] GeneralNames OPTIONAL,
 requestorName [3] GeneralNames OPTIONAL,
 replyObjects [4] ReplyObjects OPTIONAL,
 respNonce [5] OCTET STRING OPTIONAL,
 serverContextInfo [6] OCTET STRING OPTIONAL,
 cvResponseExtensions [7] Extensions OPTIONAL,
 requestorText [8] UTF8String (SIZE (1..256)) OPTIONAL }

 Conforming SCVP servers MAY be capable of constructing a CVResponse
 that includes the serverContextInfo or cvResponseExtensions items.
 Conforming SCVP servers MUST be capable of constructing a CVResponse
 with any of the remaining optional items. Conforming SCVP clients
 MUST be capable of processing a CVResponse with the following
 optional items: respValidationPolicy, requestRef, requestorName,
 replyObjects, and respNonce.

 Conforming SCVP clients that are capable of including requestorRef in
 a request MUST be capable of processing a CVResponse that includes
 the requestorRef item. Conforming SCVP clients MUST be capable of
 processing a CVResponse that includes the serverContextInfo or
 cvResponseExtensions items. Conforming clients MUST be able to
 determine if critical extensions are present in the
 cvResponseExtensions item.

4.1. cvResponseVersion

 The syntax and semantics of cvResponseVersion are the same as
 cvRequestVersion as described in Section 3.1. The cvResponseVersion
 MUST match the cvRequestVersion in the request. If the server cannot
 generate a response with a matching version number, then the server
 MUST return an error response that indicates the highest version
 number that the server supports as the version number.

4.2. serverConfigurationID

 The server configuration ID item represents the version of the SCVP
 server configuration when it processed the request. See Section 6.4
 for details.

Freeman, et al. Standards Track [Page 43]

RFC 5055 SCVP December 2007

4.3. producedAt

 The producedAt item tells the date and time at which the SCVP server
 generated the response. The producedAt item MUST be expressed in
 UTC, and it MUST be interpreted as defined in Section 3.2.7. This
 value is independent of the validation time.

4.4. responseStatus

 The responseStatus item gives status information to the SCVP client
 about its request. The responseStatus item has a numeric status code
 and an optional string that is a sequence of characters from the
 ISO/IEC 10646-1 character set encoded with the UTF-8 transformation
 format defined in [UTF8].

 The string MAY be used to transmit status information. The client
 MAY choose to display the string to a human user. However, because
 there is often no way to know the languages understood by a human
 user, the string may be of little or no assistance.

 The responseStatus item uses the ResponseStatus type, which has the
 following syntax:

 ResponseStatus ::= SEQUENCE {
 statusCode CVStatusCode DEFAULT okay,
 errorMessage UTF8String OPTIONAL }

 CVStatusCode ::= ENUMERATED {
 okay (0),
 skipUnrecognizedItems (1),
 tooBusy (10),
 invalidRequest (11),
 internalError (12),
 badStructure (20),
 unsupportedVersion (21),
 abortUnrecognizedItems (22),
 unrecognizedSigKey (23),
 badSignatureOrMAC (24),
 unableToDecode (25),
 notAuthorized (26),
 unsupportedChecks (27),
 unsupportedWantBacks (28),
 unsupportedSignatureOrMAC (29),
 invalidSignatureOrMAC (30),
 protectedResponseUnsupported (31),
 unrecognizedResponderName (32),
 relayingLoop (40),
 unrecognizedValPol (50),

Freeman, et al. Standards Track [Page 44]

RFC 5055 SCVP December 2007

 unrecognizedValAlg (51),
 fullRequestInResponseUnsupported (52),
 fullPolResponseUnsupported (53),
 inhibitPolicyMappingUnsupported (54),
 requireExplicitPolicyUnsupported (55),
 inhibitAnyPolicyUnsupported (56),
 validationTimeUnsupported (57),
 unrecognizedCritQueryExt (63),
 unrecognizedCritRequestExt (64) }

 The CVStatusCode values have the following meaning:

 0 The request was fully processed.
 1 The request included some unrecognized non-critical extensions;
 however, processing was able to continue ignoring them.
 10 Too busy; try again later.
 11 The server was able to decode the request, but there was some
 other problem with the request.
 12 An internal server error occurred.
 20 The structure of the request was wrong.
 21 The version of request is not supported by this server.
 22 The request included unrecognized items, and the server was not
 able to continue processing.
 23 The server could not validate the key used to protect the
 request.
 24 The signature or message authentication code did not match the
 body of the request.
 25 The encoding was not understood.
 26 The request was not authorized.
 27 The request included unsupported checks items, and the server was
 not able to continue processing.
 28 The request included unsupported wantBack items, and the server
 was not able to continue processing.
 29 The server does not support the signature or message
 authentication code algorithm used by the client to protect the
 request.
 30 The server could not validate the client’s signature or message
 authentication code on the request.
 31 The server could not generate a protected response as requested
 by the client.
 32 The server does not have a certificate matching the requested
 responder name.
 40 The request was previously relayed by the same server.
 50 The request contained an unrecognized validation policy
 reference.
 51 The request contained an unrecognized validation algorithm OID.
 52 The server does not support returning the full request in the
 response.

Freeman, et al. Standards Track [Page 45]

RFC 5055 SCVP December 2007

 53 The server does not support returning the full validation policy
 by value in the response.
 54 The server does not support the requested value for inhibit
 policy mapping.
 55 The server does not support the requested value for require
 explicit policy.
 56 The server does not support the requested value for inhibit
 anyPolicy.
 57 The server only validates requests using current time.
 63 The query item in the request contains a critical extension whose
 OID is not recognized.
 64 The request contains a critical request extension whose OID is
 not recognized.

 Status codes 0-9 are reserved for codes that indicate the request was
 processed by the server and therefore MUST be sent in a success
 response. Status codes 10 and above indicate an error and MUST
 therefore be sent in an error response.

4.5. respValidationPolicy

 The respValidationPolicy item contains either a reference to the full
 validation policy or the full policy by value used by the server to
 validate the request. It MUST be present in success responses and
 MUST NOT be present in error responses. The choice between returning
 the policy by reference or by value is controlled by the
 responseValidationPolByRef item in the request. The resultant
 validation policy is the union of the following:

 1. Values from the request.

 2. For values that are not explicitly included in the request, values
 from the validation policy specified by reference in the request.

 The RespValidationPolicy syntax is:

 RespValidationPolicy ::= ValidationPolicy

 The validationPolicy item is defined in Section 3.2.4. When
 responseValidationPolByRef is set to FALSE in the request, all items
 in the validationPolicy item MUST be populated. When
 responseValidationPolByRef is set to TRUE, OPTIONAL items in the
 validationPolicy item only need to be populated for items for which
 the value in the request differs from the value from the referenced
 validation policy.

Freeman, et al. Standards Track [Page 46]

RFC 5055 SCVP December 2007

 Conforming SCVP clients MUST be capable of processing the validation
 policy by reference. SCVP clients MAY be capable of processing the
 optional items in the validation policy.

 Conforming SCVP server implementations MUST be capable of asserting
 the policy by reference, and MUST be capable of including the
 optional items.

4.6. requestRef

 The requestRef item allows the SCVP client to identify the request
 that corresponds to this response from the server. It associates the
 response to a particular request using either a hash of the request
 or a copy of CVRequest from the request.

 The requestRef item does not provide authentication, but does allow
 the client to determine that the request was not maliciously
 modified.

 The requestRef item allows the client to associate a response with a
 request. The requestNonce provides an alternative mechanism for
 matching requests and responses. When the fullRequest alternative is
 used, the response provides a single data structure that is suitable
 for archive of the transaction.

 The requestRef item uses the RequestReference type, which has the
 following syntax:

 RequestReference ::= CHOICE {
 requestHash [0] HashValue, -- hash of CVRequest
 fullRequest [1] CVRequest }

 SCVP clients MUST support requestHash, and they MAY support
 fullRequest. SCVP servers MUST support using requestHash, and they
 SHOULD support using fullRequest.

4.6.1. requestHash

 The requestHash item is the hash of the CVRequest. The one-way hash
 function used to compute the hash of the CVRequest is as specified in
 Section 3.9. The requestHash item serves two purposes. First, it
 allows a client to determine that the request was not maliciously
 modified. Second, it allows the client to associate a response with
 a request when using connectionless protocols. The requestNonce
 provides an alternative mechanism for matching requests and
 responses.

Freeman, et al. Standards Track [Page 47]

RFC 5055 SCVP December 2007

 The requestHash item uses the HashValue type, which has the following
 syntax:

 HashValue ::= SEQUENCE {
 algorithm AlgorithmIdentifier DEFAULT { algorithm sha-1 },
 value OCTET STRING }

 sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 oiw(14) secsig(3) algorithm(2) 26 }

 The algorithm identifier for SHA-1 is imported from [PKIX-ALG]. It
 is repeated here for convenience.

4.6.2. fullRequest

 Like requestHash, the fullRequest alternative allows a client to
 determine that the request was not maliciously modified. It also
 provides a single data structure that is suitable for archive of the
 transaction.

 The fullRequest item uses the CVRequest type. The syntax and
 semantics of the CVRequest type are described in Section 3.

4.7. requestorRef

 The optional requestorRef item is used by the client to identify the
 original requestor in cases where SCVP relay is used. The value is
 only of local significance to the client. If the SCVP client
 includes a requestorRef value in the request, then the SCVP server
 MUST return the same value if the server is generating a non-cached
 response.

4.8. requestorName

 The optional requestorName item is used by the server to return one
 or more identities associated with the client in the response.

 The SCVP server MAY choose to include any or all of the following:

 (1) the identity asserted by the client in the requestorName item of
 the request,

 (2) an authenticated identity for the client from a certificate or
 other credential used to authenticate the request, or

 (3) a client identifier from an out-of-band mechanism.

 Alternatively, the SCVP server MAY omit this item.

Freeman, et al. Standards Track [Page 48]

RFC 5055 SCVP December 2007

 In the case of non-cached responses to authenticated requests, the
 SCVP server SHOULD return a requestor name.

 SCVP servers that support authenticated requests SHOULD support this
 item.

 SCVP clients MUST be able to process responses that include this
 item, although the item value might not impact the processing in any
 manner.

4.9. replyObjects

 The replyObjects item returns requested objects to the SCVP client,
 each of which tells the client about a single certificate from the
 request. The replyObjects item MUST be present in the response,
 unless the response is reporting an error. The CertReply item MUST
 contain cert, replyStatus, replyValTime, replyChecks, and
 replyWantBacks items, and the CertReply item MAY contain the
 validationErrors, nextUpdate, and certReplyExtensions items.

 A success response MUST contain one CertReply for each certificate
 specified in the queriedCerts item in the request. The order is
 important. The first CertReply in the sequence MUST correspond to
 the first certificate in the request, the second CertReply in the
 sequence MUST correspond to the second certificate in the request,
 and so on.

 The checks item in the request determines the content of the
 replyChecks item in the response. The wantBack item in the request
 determines the content of the replyWantBacks item in the response.
 The queryExtensions items in the request controls the absence or the
 presence and content of the certReplyExtensions item in the response.

 The replyObjects item uses the ReplyObjects type, which has the
 following syntax:

 ReplyObjects ::= SEQUENCE SIZE (1..MAX) OF CertReply

 CertReply ::= SEQUENCE {
 cert CertReference,
 replyStatus ReplyStatus DEFAULT success,
 replyValTime GeneralizedTime,
 replyChecks ReplyChecks,
 replyWantBacks ReplyWantBacks,
 validationErrors [0] SEQUENCE SIZE (1..MAX) OF
 OBJECT IDENTIFIER OPTIONAL,
 nextUpdate [1] GeneralizedTime OPTIONAL,
 certReplyExtensions [2] Extensions OPTIONAL }

Freeman, et al. Standards Track [Page 49]

RFC 5055 SCVP December 2007

4.9.1. cert

 The cert item contains either the certificate or a reference to the
 certificate about which the client is requesting information. If the
 certificate was specified by reference in the request, the request
 included either the id-swb-pkc-cert or id-swb-aa-cert wantBack, and
 the server was able to obtain the referenced certificate, then this
 item MUST include the certificate. Otherwise, this item MUST include
 the same value as was used in the queriedCerts item in the request.

 CertReference has the following syntax:

 CertReference ::= CHOICE {
 pkc PKCReference,
 ac ACReference }

4.9.2. replyStatus

 The replyStatus item gives status information to the client about the
 request for the specific certificate. Note that the responseStatus
 item is different from the replyStatus item. The responseStatus item
 is the status of the whole request, while the replyStatus item is the
 status for the individual query item.

 The replyStatus item uses the ReplyStatus type, which has the
 following syntax:

 ReplyStatus ::= ENUMERATED {
 success (0),
 malformedPKC (1),
 malformedAC (2),
 unavailableValidationTime (3),
 referenceCertHashFail (4),
 certPathConstructFail (5),
 certPathNotValid (6),
 certPathNotValidNow (7),
 wantBackUnsatisfied (8) }

 The meanings of the various ReplyStatus values are:

 0 Success: all checks were performed successfully.
 1 Failure: the public key certificate was malformed.
 2 Failure: the attribute certificate was malformed.
 3 Failure: historical data for the requested validation time is not
 available.
 4 Failure: the server could not locate the reference certificate or
 the referenced certificate did not match the hash value provided.
 5 Failure: no certification path could be constructed.

Freeman, et al. Standards Track [Page 50]

RFC 5055 SCVP December 2007

 6 Failure: the constructed certification path is not valid with
 respect to the validation policy.
 7 Failure: the constructed certification path is not valid with
 respect to the validation policy, but a query at a later time may
 be successful.
 8 Failure: all checks were performed successfully; however, one or
 more of the wantBacks could not be satisfied.

 Codes 1 and 2 are used to tell the client that the request was
 properly formed, but the certificate in question was not. This is
 especially useful to clients that do not parse certificates.

 Code 7 is used to tell the client that a valid certification path was
 found with the exception that a certificate in the path is on hold,
 current revocation information is unavailable, or the validation time
 precedes the notBefore time in one or more certificates in the path.

 For codes 1, 2, 3, and 4, the replyChecks and replyWantBacks items
 are not populated (i.e., they MUST be an empty sequence). For codes
 5, 6, 7, and 8, replyChecks MUST include an entry corresponding to
 each check in the request; the replyWantBacks item is not populated.

4.9.3. replyValTime

 The replyValTime item tells the time at which the information in the
 CertReply was correct. The replyValTime item represents the date and
 time in UTC, using GeneralizedTime type. The encoding rules for
 GeneralizedTime in Section 3.2.7 MUST be used.

 Within the request, the optional validationTime item tells the date
 and time relative to which the SCVP client wants the server to
 perform the checks. If the validationTime is not present, the server
 MUST respond as if the client provided the date and time at which the
 server processes the request.

 The information in the CertReply item MUST be formatted as if the
 server created this portion of the response at the time indicated in
 the validationTime item of the query. However, if the server does
 not have appropriate historical information, the server MAY either
 return an error or return information for a later time.

4.9.4. replyChecks

 The replyChecks item contains the responses to the checks item in the
 query. The replyChecks item includes the object identifier (OID)
 from the query and an integer. The value of the integer indicates
 whether the requested check was successful. The OIDs in the checks
 item of the query are used to identify the corresponding replyChecks

Freeman, et al. Standards Track [Page 51]

RFC 5055 SCVP December 2007

 values. Each OID specified in the checks item in the request MUST be
 matched by an OID in the replyChecks item of the response. In the
 case of an error response, the server MAY include additional checks
 in the response to further explain the error. Clients MUST ignore
 any unrecognized ReplyCheck included in the response.

 The replyChecks item uses the ReplyChecks type, which has the
 following syntax:

 ReplyChecks ::= SEQUENCE OF ReplyCheck

 ReplyCheck ::= SEQUENCE {
 check OBJECT IDENTIFIER,
 status INTEGER DEFAULT 0 }

 The status value for public key certification path building to a
 trusted root, { id-stc 1 }, can be one of the following:

 0: Built a path
 1: Could not build a path

 The status value for public key certification path building to a
 trusted root along with simple validation processing, { id-stc 2 },
 can be one of the following:

 0: Valid
 1: Not valid

 The status value for public key certification path building to a
 trusted root along with complete status checking, { id-stc 3 }, can
 be one of the following:

 0: Valid
 1: Not valid
 2: Revocation off-line
 3: Revocation unavailable
 4: No known source for revocation information

 Revocation off-line means that the server or distribution point for
 the revocation information was connected to successfully without a
 network error but either no data was returned or if data was returned
 it was stale. Revocation unavailable means that a network error was
 returned when an attempt was made to reach the server or distribution
 point. No known source for revocation information means that the
 server was able to build a valid certification path but was unable to
 locate a source for revocation information for one or more
 certificates in the path.

Freeman, et al. Standards Track [Page 52]

RFC 5055 SCVP December 2007

 The status value for AC issuer certification path building to a
 trusted root, { id-stc 4 }, can be one of the following:

 0: Built a path
 1: Could not build a path

 The status value for AC issuer certification path building to a
 trusted root along with simple validation processing, { id-stc 5 },
 can be one of the following:

 0: Valid
 1: Not valid

 The status value for AC issuer certification path building to a
 trusted root along with complete status checking, { id-stc 6 }, can
 be one of the following:

 0: Valid
 1: Not valid
 2: Revocation off-line
 3: Revocation unavailable
 4: No known source for revocation information

 The status value for revocation status checking of an AC as well as
 AC issuer certification path building to a trusted root along with
 complete status checking, { id-stc 7 }, can be one of the following:

 0: Valid
 1: Not valid
 2: Revocation off-line
 3: Revocation unavailable
 4: No known source for revocation information

4.9.5. replyWantBacks

 The replyWantBacks item contains the responses to the wantBack item
 in the request. The replyWantBacks item includes the object
 identifier (OID) from the wantBack item in the request and an OCTET
 STRING. Within the OCTET STRING is the requested value. The OIDs in
 the wantBack item in the request are used to identify the
 corresponding reply value. The OIDs in the replyWantBacks item MUST
 match the OIDs in the wantBack item in the request. For a non-error
 response, replyWantBacks MUST include exactly one ReplyWantBack for
 each wantBack specified in the request (excluding id-swb-pkc-cert and
 id-swb-ac-cert, where the requested information is included in the
 cert item).

Freeman, et al. Standards Track [Page 53]

RFC 5055 SCVP December 2007

 The replyWantBacks item uses the ReplyWantBacks type, which has the
 following syntax:

 ReplyWantBacks ::= SEQUENCE OF ReplyWantBack

 ReplyWantBack::= SEQUENCE {
 wb OBJECT IDENTIFIER,
 value OCTET STRING }

 The OCTET STRING value for the certification path used to verify the
 certificate in the request, { id-swb 1 }, contains the CertBundle
 type. The syntax and semantics of the CertBundle type are described
 in Section 3.2.8. This CertBundle includes all the certificates in
 the path, starting with the end certificate and ending with the
 certificate issued by the trust anchor.

 The OCTET STRING value for the proof of revocation status,
 { id-swb 2 }, contains the RevInfoWantBack type. The RevInfoWantBack
 type is a SEQUENCE of the RevocationInfos type and an optional
 CertBundle. The syntax and semantics of the RevocationInfos type are
 described in Section 3.2.9. The CertBundle MUST be included if any
 certificates required to validate the revocation information were not
 returned in the id-swb-pkc-best-cert-path or
 id-swb-pkc-all-cert-paths wantBack. The CertBundle MUST include all
 such certificates, but there are no ordering requirements.

 RevInfoWantBack ::= SEQUENCE {
 revocationInfo RevocationInfos,
 extraCerts CertBundle OPTIONAL }

 The OCTET STRING value for the public key information, { id-swb 4 },
 contains the SubjectPublicKeyInfo type. The syntax and semantics of
 the SubjectPublicKeyInfo type are described in [PKIX-1].

 The OCTET STRING value for the AC issuer certification path used to
 verify the certificate in the request, { id-swb 5 }, contains the
 CertBundle type. The syntax and semantics of the CertBundle type are
 described in Section 3.2.8. This CertBundle includes all the
 certificates in the path, beginning with the AC issuer certificate
 and ending with the certificate issued by the trust anchor.

 The OCTET STRING value for the proof of revocation status of the AC
 issuer certification path, { id-swb 6 }, contains the RevInfoWantBack
 type. The RevInfoWantBack type is a SEQUENCE of the RevocationInfos
 type and an optional CertBundle. The syntax and semantics of the
 RevocationInfos type are described in Section 3.2.9. The CertBundle

Freeman, et al. Standards Track [Page 54]

RFC 5055 SCVP December 2007

 MUST be included if any certificates required to validate the
 revocation information were not returned in the id-aa-cert-path
 wantBack. The CertBundle MUST include all such certificates, but
 there are no ordering requirements.

 The OCTET STRING value for the proof of revocation status of the
 attribute certificate, { id-swb 7 }, contains the RevInfoWantBack
 type. The RevInfoWantBack type is a SEQUENCE of the RevocationInfos
 type and an optional CertBundle. The syntax and semantics of the
 RevocationInfos type are described in Section 3.2.9. The CertBundle
 MUST be included if any certificates required to validate the
 revocation information were not returned in the id-swb-aa-cert-path
 wantBack. The CertBundle MUST include all such certificates, but
 there are no ordering requirements.

 The OCTET STRING value for returning all paths, { id-swb 12 },
 contains an ASN.1 type CertBundles, as defined below. The syntax and
 semantics of the CertBundle type are described in Section 3.2.8.
 Each CertBundle includes all the certificates in one path, starting
 with the end certificate and ending with the certificate issued by
 the trust anchor.

 CertBundles ::= SEQUENCE SIZE (1..MAX) OF CertBundle

 The OCTET STRING value for relayed responses, { id-swb 9 }, contains
 an ASN.1 type SCVPResponses, as defined below. If the SCVP server
 used information obtained from other SCVP servers when generating
 this response, then SCVPResponses MUST include each of the SCVP
 responses received from those servers. If the SCVP server did not
 use information obtained from other SCVP servers when generating the
 response, then SCVPResponses MUST be an empty sequence.

 SCVPResponses ::= SEQUENCE OF ContentInfo

 The OCTET STRING value for the proof of revocation status of the
 path’s target certificate, { id-swb-13 }, contains the
 RevInfoWantBack type. The RevInfoWantBack type is a SEQUENCE of the
 RevocationInfos type and an optional CertBundle. The syntax and
 semantics of the RevocationInfos type are described in Section 3.2.9.
 The CertBundle MUST be included if any certificates required to
 validate the revocation information were not returned in the id-swb-
 pkc-best-cert-path or id-swb-pkc-all-cert-paths wantBack. The
 CertBundle MUST include all such certificates, but there are no
 ordering requirements.

 The OCTET STRING value for the proof of revocation status of the
 intermediate certificates in the path, { id-swb 14 }, contains the
 RevInfoWantBack type. The RevInfoWantBack type is a SEQUENCE of the

Freeman, et al. Standards Track [Page 55]

RFC 5055 SCVP December 2007

 RevocationInfos type and an optional CertBundle. The syntax and
 semantics of the RevocationInfos type are described in Section 3.2.9.
 The CertBundle MUST be included if any certificates required to
 validate the revocation information were not returned in the id-swb-
 pkc-best-cert-path or id-swb-pkc-all-cert-paths wantBack. The
 CertBundle MUST include all such certificates, but there are no
 ordering requirements.

4.9.6. validationErrors

 The validationErrors item MUST only be present in failure responses.
 If present, it MUST contain one or more OIDs representing the reason
 the validation failed (validation errors for the basic validation
 algorithm and name validation algorithm are defined in Sections
 3.2.4.2.2 and 3.2.4.2.4). The validationErrors item SHOULD only be
 included when the replyStatus is 3, 5, 6, 7, or 8. SCVP servers are
 not required to specify all of the reasons that validation failed.
 SCVP clients MUST NOT assume that the OIDs included in
 validationErrors represent all of the validation errors for the
 certification path.

4.9.7. nextUpdate

 The nextUpdate item tells the time at which the server expects a
 refresh of information regarding the validity of the certificate to
 become available. The nextUpdate item is especially interesting if
 the certificate revocation status information is not available or the
 certificate is suspended. The nextUpdate item represents the date
 and time in UTC, using the GeneralizedTime type. The encoding rules
 for GeneralizedTime in Section 3.2.7 MUST be used.

4.9.8. certReplyExtensions

 The certReplyExtensions item contains the responses to the
 queryExtensions item in the request. The certReplyExtensions item
 uses the Extensions type defined in [PKIX-1]. The object identifiers
 (OIDs) in the queryExtensions item in the request are used to
 identify the corresponding reply values. The certReplyExtensions
 item, when present, contains a sequence of Extension items, each of
 which contains an extnID item, a critical item, and an extnValue
 item.

 The extnID item is an identifier for the extension. It contains the
 OID that names the extension, and it MUST match one of the OIDs in
 the queryExtensions item in the request.

 The critical item is a BOOLEAN, and it MUST be set to FALSE.

Freeman, et al. Standards Track [Page 56]

RFC 5055 SCVP December 2007

 The extnValue item contains an OCTET STRING. Within the OCTET STRING
 is the extension value. An ASN.1 type is specified for each
 extension, identified by the associated extnID object identifier.

4.10. respNonce

 The respNonce item contains an identifier to bind the request to the
 response.

 If the client includes a requestNonce value in the request and the
 server is generating a specific non-cached response to the request
 then the server MUST return the same value in the response.

 If the server is using a cached response to the request then it MUST
 omit the respNonce item.

 If the server is returning a specific non-cached response to a
 request without a nonce, then the server MAY include a message-
 specific nonce. For digitally signed messages, the server MAY use
 the value of the message-digest attribute in the signedAttrs within
 SignerInfo of the request as the value in the respNonce item.

 The requestNonce item uses the OCTET STRING type.

 Conforming client implementations MUST be able to process a response
 that includes this item. Conforming servers MUST support respNonce.

4.11. serverContextInfo

 The serverContextInfo item in a response is a mechanism for the
 server to pass some opaque context information to the client. If the
 client does not like the certification path returned, it can make a
 new query and pass along this context information.

 Section 3.2.6 contains information about the client’s usage of this
 item.

 The context information is opaque to the client, but it provides
 information to the server that ensures that a different certification
 path will be returned (if another one can be found). The context
 information could indicate the state of the server, or it could
 contain a sequence of hashes of certification paths that have already
 been returned to the client. The protocol does not dictate any
 structure or requirements for this item. However, implementers
 should review the Security Considerations section of this document
 before selecting a structure.

Freeman, et al. Standards Track [Page 57]

RFC 5055 SCVP December 2007

 Servers that are incapable of returning additional paths MUST NOT
 include the serverContextInfo item in the response.

4.12. cvResponseExtensions

 If present, the cvResponseExtensions item contains a sequence of
 extensions that extend the response. This specification does not
 define any extensions. The facility is provided to allow future
 specifications to extend SCVP. The syntax for Extensions is imported
 from [PKIX-1]. The cvResponseExtensions item, when present, contains
 a sequence of Extension items, each of which contains an extnID item,
 a critical item, and an extnValue item.

 The extnID item is an identifier for the extension. It contains the
 object identifier (OID) that names the extension.

 The critical item is a BOOLEAN. Each extension is designated as
 either critical (with a value of TRUE) or non-critical (with a value
 of FALSE). An SCVP client MUST reject the response if it encounters
 a critical extension it does not recognize; however, a non-critical
 extension MAY be ignored if it is not recognized.

 The extnValue item contains an OCTET STRING. Within the OCTET STRING
 is the extension value. An ASN.1 type is specified for each
 extension, identified by the associated extnID object identifier.

4.13. requestorText

 The requestorText item contains a text field supplied by the client.

 If the client includes a requestorText value in the request and the
 server is generating a specific non-cached response to the request,
 then the server MUST return the same value in the response.

 If the server is using a cached response to the request, then it MUST
 omit the requestorText item.

 The requestNonce item uses the UTF8 string type.

 Conforming client implementations that support the requestorText item
 in requests (see Section 3.10) MUST be able to process a response
 that includes this item. Conforming servers MUST support
 requestorText in responses.

Freeman, et al. Standards Track [Page 58]

RFC 5055 SCVP December 2007

4.14. SCVP Response Validation

 There are two mechanisms for validation of SCVP responses, one based
 on the client’s knowledge of a specific SCVP server key and the other
 based on validation of the certificate corresponding to the private
 key used to protect the SCVP response.

4.14.1. Simple Key Validation

 The simple key validation method is where the SCVP client has a local
 policy of one or more SCVP server keys that directly identify the set
 of valid SCVP servers. Mechanisms for storage of server keys or
 identifiers are a local matter. For example, a client could store
 cryptographic hashes of public keys used to verify SignedData
 responses. Alternatively, a client could store shared symmetric keys
 used to verify MACs in AuthenticatedData responses.

 Simple key validation MUST be used by SCVP clients that cannot
 validate PKIX-1 certificates and are therefore making delegated path
 validation requests to the SCVP server [RQMTS]. It is a matter of
 local policy with these clients whether to use SignedData or
 AuthenticatedData. Simple key validation MAY be used by other SCVP
 clients for other reasons.

4.14.2. SCVP Server Certificate Validation

 It is a matter of local policy what validation policy the client uses
 when validating responses. When validating protected SCVP responses,
 SCVP clients SHOULD use the validation algorithm defined in Section 6
 of [PKIX-1]. SCVP clients may impose additional limitations on the
 algorithm, such as limiting the number of certificates in the path or
 establishing initial name constraints, as specified in Section 6.2 of
 [PKIX-1].

 If the certificate used to sign the validation policy responses and
 SignedData validation responses contains the key usage extension
 ([PKIX-1], Section 4.2.1.3), it MUST have either the digital
 signature bit set, the non-repudiation bit set, or both bits set.

 If the certificate for AuthenticatedData validation responses
 contains the key usage extension, it MUST have the key agreement bit
 set.

Freeman, et al. Standards Track [Page 59]

RFC 5055 SCVP December 2007

 If the certificate used on a validation policy response or a
 validation response contains the extended key usage extension
 ([PKIX-1], Section 4.2.1.13), it MUST contain either the
 anyExtendedKeyUsage OID or the following OID:

 id-kp-scvpServer OBJECT IDENTIFIER ::= { id-kp 15 }

5. Server Policy Request

 An SCVP client uses the ValPolRequest item to request information
 about an SCVP server’s policies and configuration information,
 including the list of validation policies supported by the SCVP
 server. When a ValPolRequest is encapsulated in a MIME body part, it
 MUST be carried in an application/scvp-vp-request MIME body part.

 The request consists of a ValPolRequest encapsulated in a
 ContentInfo. The client does not sign the request.

 ContentInfo {
 contentType id-ct-scvp-valPolRequest,
 -- (1.2.840.113549.1.9.16.1.12)
 content ValPolRequest }

 The ValPolRequest type has the following syntax:

 ValPolRequest ::= SEQUENCE {
 vpRequestVersion INTEGER DEFAULT 1,
 requestNonce OCTET STRING }

 Conforming SCVP server implementations MUST recognize and process the
 server policy request. Conforming clients SHOULD support the server
 policy request.

5.1. vpRequestVersion

 The syntax and semantics of vpRequestVersion are the same as
 cvRequestVersion as described in Section 3.1.

5.2. requestNonce

 The requestNonce item contains a request identifier generated by the
 SCVP client. If the server returns a specific response, it MUST
 include the requestNonce from the request in the response, but the
 server MAY return a cached response, which MUST NOT include a
 requestNonce.

Freeman, et al. Standards Track [Page 60]

RFC 5055 SCVP December 2007

6. Validation Policy Response

 In response to a ValPolRequest, the SCVP server provides a
 ValPolResponse. The ValPolResponse may not be unique to any
 ValPolRequest, so may be reused by the server in response to multiple
 ValPolRequests. The ValPolResponse also has an indication of how
 frequently the ValPolResponse may be reissued. The server MUST sign
 the response using its digital signature certificate. When a
 ValPolResponse is encapsulated in a MIME body part, it MUST be
 carried in an application/scvp-vp-response MIME body part.

 The response consists of a ValPolResponse encapsulated in a
 SignedData, which is in turn encapsulated in a ContentInfo. That is,
 the EncapsulatedContentInfo field of SignedData consists of an
 eContentType field with a value of id-ct-scvp-valPolResponse
 (1.2.840.113549.1.9.16.1.13) and an eContent field that contains a
 DER-encoded ValPolResponse. The SCVP server MUST include its own
 certificate in the certificates field within SignedData, and the
 signerInfos field of SignedData MUST include exactly one SignerInfo.
 The SignedData MUST NOT include the unsignedAttrs field.

 The ValPolResponse type has the following syntax:

 ValPolResponse ::= SEQUENCE {
 vpResponseVersion INTEGER,
 maxCVRequestVersion INTEGER,
 maxVPRequestVersion INTEGER,
 serverConfigurationID INTEGER,
 thisUpdate GeneralizedTime,
 nextUpdate GeneralizedTime OPTIONAL,
 supportedChecks CertChecks,
 supportedWantBacks WantBack,
 validationPolicies SEQUENCE OF OBJECT IDENTIFIER,
 validationAlgs SEQUENCE OF OBJECT IDENTIFIER,
 authPolicies SEQUENCE OF AuthPolicy,
 responseTypes ResponseTypes,
 defaultPolicyValues RespValidationPolicy,
 revocationInfoTypes RevocationInfoTypes,
 signatureGeneration SEQUENCE OF AlgorithmIdentifier,
 signatureVerification SEQUENCE OF AlgorithmIdentifier,
 hashAlgorithms SEQUENCE SIZE (1..MAX) OF
 OBJECT IDENTIFIER,
 serverPublicKeys SEQUENCE OF KeyAgreePublicKey
 OPTIONAL,
 clockSkew INTEGER DEFAULT 10,
 requestNonce OCTET STRING OPTIONAL }

Freeman, et al. Standards Track [Page 61]

RFC 5055 SCVP December 2007

 ResponseTypes ::= ENUMERATED {
 cached-only (0),
 non-cached-only (1),
 cached-and-non-cached (2) }

 RevocationInfoTypes ::= BIT STRING {
 fullCRLs (0),
 deltaCRLs (1),
 indirectCRLs (2),
 oCSPResponses (3) }

 SCVP clients that support validation policy requests MUST support
 validation policy responses. SCVP servers MUST support validation
 policy responses.

 SCVP servers MUST support cached policy responses and MAY support
 specific responses to policy requests.

6.1. vpResponseVersion

 The syntax and semantics of the vpResponseVersion item are the same
 as cvRequestVersion as described in Section 3.1. The
 vpResponseVersion used MUST be the same as the vpRequestVersion
 unless the client has used a value greater than the values the server
 supports. If the client submits a vpRequestVersion greater than the
 version supported by the server, the server MUST return a
 vpResponseVersion using the highest version number the server
 supports as the version number.

6.2. maxCVRequestVersion

 The maxCVRequestVersion item defines the maximum version number for
 CV requests that the server supports.

6.3. maxVPRequestVersion

 The maxVPRequestVersion item defines the maximum version number for
 VP requests that the server supports.

6.4. serverConfigurationID

 The serverConfigurationID item is an integer that uniquely represents
 the version of the server configuration as represented by the
 validationPolicies, validationAlgs, authPolicies,
 defaultPolicyValues, and clockSkew. If any of these values change,
 the server MUST create a new ValPolResponse with a new
 serverConfigurationID. If the configuration has not changed, then
 the server may reuse serverConfigurationID across multiple

Freeman, et al. Standards Track [Page 62]

RFC 5055 SCVP December 2007

 ValPolResponse messages. However, if the server reverts to an
 earlier configuration, the server MUST NOT revert the configuration
 ID as well, but MUST select another unique value.

6.5. thisUpdate

 This item indicates the signing date and time of this policy
 response.

 GeneralizedTime values MUST be expressed in Greenwich Mean Time
 (Zulu) and interpreted as defined in Section 3.2.7.

6.6. nextUpdate and requestNonce

 These items are used to indicate whether policy responses are
 specific to policy requests. Where policy responses are cached,
 these items indicate when the information will be updated. The
 optional nextUpdate item indicates the time by which the next policy
 response will be published. The optional requestNonce item links the
 response to a specific request by returning the nonce provided in the
 request.

 If the nextUpdate item is omitted, it indicates a non-cached response
 generated in response to a specific request (i.e., the ValPolResponse
 is bound to a specific request). If this item is omitted, the
 requestNonce item MUST be present and MUST include the requestNonce
 value from the request.

 If the nextUpdate item is present, it indicates a cached response
 that is not bound to a specific request. An SCVP server MUST
 periodically generate a new response as defined by the next update
 time, but MAY use the same ValPolResponse to respond to multiple
 requests. The requestNonce is omitted if the nextUpdate item is
 present.

 It is a matter of local server policy to return a cached or non-
 cached specific response.

 GeneralizedTime values in nextUpdate MUST be expressed in Greenwich
 Mean Time (Zulu) as specified in Section 3.2.7.

6.7. supportedChecks

 The supportedChecks item contains a sequence of object identifiers
 representing the checks supported by the server.

Freeman, et al. Standards Track [Page 63]

RFC 5055 SCVP December 2007

6.8. supportedWantBacks

 The supportedWantBacks item contains a sequence of object identifiers
 representing the wantBacks supported by the server.

6.9. validationPolicies

 The validationPolicies item contains a sequence of object identifiers
 representing the validation policies supported by the server. It is
 a matter of local policy if the server wishes to process requests
 using the default validation policy, and if it does not, then it MUST
 NOT include the id-svp-defaultValPolicy in this list.

6.10. validationAlgs

 The validationAlgs item contains a sequence of OIDs. Each OID
 identifies a validation algorithm supported by the server.

6.11. authPolicies

 The authPolicies item contains a sequence of policy references for
 authenticating to the SCVP server.

 The reference to the authentication policy is an OID that the client
 and server have agreed represents an authentication policy. The list
 of policies is intended to document to the client if authentication
 is required for some requests and if so how.

 AuthPolicy ::= OBJECT IDENTIFIER

6.12. responseTypes

 The responseTypes item allows the server to publish the range of
 response types it supports. Cached only means the server will only
 return cached responses to requests. Non-cached only means the
 server will return a specific response to the request, i.e.,
 containing the requestor’s nonce. Both means that the server
 supports both cached and non-cached response types and will return
 either a cached or non- cached response, depending on the request.

6.13. revocationInfoTypes

 The revocationInfoTypes item allows the server to indicate the
 sources of revocation information that it is capable of processing.
 For each bit in the RevocationInfoTypes BIT STRING, the server MUST
 set the bit to one if it is capable of processing the corresponding
 revocation information type and to zero if it cannot.

Freeman, et al. Standards Track [Page 64]

RFC 5055 SCVP December 2007

6.14. defaultPolicyValues

 This is the default validation policy used by the server. It
 contains a RespValidationPolicy, which is defined in Section 4.5.
 All OPTIONAL items in the validationPolicy item MUST be populated. A
 server will use these default values when the request references the
 default validation policy and the client does not override the
 default values by supplying other values in the request.

 This allows the client to optimize the request by omitting parameters
 that match the server default values.

6.15. signatureGeneration

 This sequence specifies the set of digital signature algorithms
 supported by an SCVP server for signing CVResponse messages. Each
 digital signature algorithm is specified as an AlgorithmIdentifier,
 using the encoding rules associated with the signatureAlgorithm field
 in a public key certificate [PKIX-1]. Supported algorithms are
 defined in [PKIX-ALG] and [PKIX-ALG2], but other signature algorithms
 may also be supported.

 By including an algorithm (e.g., RSA with SHA-1) in this list, the
 server states that it has a private key and corresponding certified
 public key for that asymmetric algorithm, and supports the specified
 hash algorithm. The list is ordered; the first digital signature
 algorithm is the server’s default algorithm. The default algorithm
 will be used by the server to protect signed messages unless the
 client specifies another algorithm.

 For servers that do not have an on-line private key, and cannot sign
 CVResponse messages, the signatureGeneration item is encoded as an
 empty sequence.

6.16. signatureVerification

 This sequence specifies the set of digital signature algorithms that
 can be verified by this SCVP server. Each digital signature
 algorithm is specified as an AlgorithmIdentifier, using the encoding
 rules associated with the signatureAlgorithm field in a public key
 certificate [PKIX-1]. Supported algorithms are defined in [PKIX-ALG]
 and [PKIX-ALG2], but other signature algorithms may also be
 supported.

 For servers that do not verify signatures on CVRequest messages, the
 signatureVerification item is encoded as an empty sequence.

Freeman, et al. Standards Track [Page 65]

RFC 5055 SCVP December 2007

6.17. hashAlgorithms

 This sequence specifies the set of hash algorithms that the server
 can use to hash certificates and requests. The list is ordered; the
 first hash algorithm is the server’s default algorithm. The default
 algorithm will be used by the server to compute hashes included in
 responses unless the client specifies another algorithm. Each hash
 algorithm is specified as an object identifier. [PKIX-ALG2]
 specifies object identifiers for SHA-1, SHA-224, SHA-256, SHA-384,
 and SHA-512. Other hash algorithms may also be supported.

6.18. serverPublicKeys

 The serverPublicKeys item is a sequence of one or more key agreement
 public keys and associated parameters. It is used by clients making
 AuthenticatedData requests to the server. Each item in the
 serverPublicKeys sequence is of the KeyAgreePublicKey type:

 KeyAgreePublicKey ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 publicKey BIT STRING,
 macAlgorithm AlgorithmIdentifier,
 kDF AlgorithmIdentifier OPTIONAL }

 The KeyAgreePublicKey includes the algorithm identifier and the
 server’s public key. SCVP servers that support the key agreement
 mode of AuthenticatedData for SCVP requests MUST support
 serverPublicKeys and the Diffie-Hellman key agreement algorithm as
 specified in [PKIX-ALG]. SCVP servers that support serverPublicKeys
 MUST support the 1024-bit Modular Exponential (MODP) group key (group
 2) as defined in [IKE]. SCVP servers that support serverPublicKeys
 MAY support other Diffie-Hellman groups [IKE-GROUPS], as well as
 other key agreement algorithms.

 The macAlgorithm item specifies the symmetric algorithm the server
 expects the client to use with the result of the key agreement
 algorithm. A key derivation function (KDF), which derives symmetric
 key material from the key agreement result, may be implied by the
 macAlgorithm. Alternatively, the KDF may be explicitly specified
 using the optional kDF item.

6.19. clockSkew

 The clockSkew item is the number of minutes the server will allow for
 clock skew. The default value is 10 minutes.

Freeman, et al. Standards Track [Page 66]

RFC 5055 SCVP December 2007

7. SCVP Server Relay

 In some network environments, especially ones that include firewalls,
 an SCVP server might not be able to obtain all of the information
 that it needs to process a request. However, the server might be
 configured to use the services of one or more other SCVP servers to
 fulfill all requests. In such cases, the SCVP client is unaware that
 the initial SCVP server is using the services of other SCVP servers.
 The initial SCVP server acts as a client to another SCVP server.
 Unlike the original client, the SCVP server is expected to have
 moderate computing and memory resources. This section describes
 SCVP server-to-SCVP server exchanges. This section does not impose
 any requirements on SCVP clients that are not also SCVP servers.
 Further, this section does not impose any requirements on SCVP
 servers that do not relay requests to other SCVP servers.

 When one SCVP server relays a request to another server, in an
 incorrectly configured system of servers, it is possible that the
 same request will be relayed back again. Any SCVP server that relays
 requests MUST implement the conventions described in this section to
 detect and break loops.

 When an SCVP server relays a request, the request MUST include the
 requestorRef item. If the request to be relayed already contains a
 requestorRef item, then the server-generated request MUST contain a
 requestorRef item constructed from this value and an additional
 GeneralName that contains an identifier of the SCVP server. If the
 request to be relayed does not contain a requestorRef item, then the
 server-generated request MUST contain a requestorRef item that
 includes a GeneralName that contains an identifier of the SCVP
 server.

 To prevent false loop detection, servers should use identifiers that
 are unique within their network of cooperating SCVP servers. SCVP
 servers that support relay SHOULD populate this item with the DNS
 name of the server or the distinguished name in the server’s
 certificate. SCVP servers MAY choose other procedures for generating
 identifiers that are unique within their community.

 When an SCVP server receives a request that contains a requestorRef
 item, the server MUST check the sequence of names in the requestorRef
 item for its own identifier. If the server discovers its own
 identifier in the requestorRef item, it MUST respond with an error,
 setting the statusCode in the responseStatus item to 40.

 When an SCVP server generates a non-cached response to a relayed
 request, the server MUST include the requestorRef item from the
 request in the response.

Freeman, et al. Standards Track [Page 67]

RFC 5055 SCVP December 2007

8. SCVP ASN.1 Module

 This section defines the syntax for SCVP request-response pairs. The
 semantics for the messages are defined in Sections 3, 4, 5, and 6.
 The SCVP ASN.1 module follows.

 SCVP

 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 21 }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 IMPORTS

 AlgorithmIdentifier, Attribute, Certificate, Extensions,
 -- Import UTF8String if required by compiler
 -- UTF8String, -- CertificateList, CertificateSerialNumber
 FROM PKIX1Explicit88 -- RFC 3280
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 18 }

 GeneralNames, GeneralName, KeyUsage, KeyPurposeId
 FROM PKIX1Implicit88 -- RFC 3280
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 19 }

 AttributeCertificate
 FROM PKIXAttributeCertificate -- RFC 3281
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 12 }

 OCSPResponse
 FROM OCSP -- RFC 2560
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0) 14 }

 ContentInfo
 FROM CryptographicMessageSyntax2004 -- RFC 3852
 { iso(1) member-body(2) us(840) rsadsi(113549)
 pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) } ;

 -- SCVP Certificate Validation Request

 id-ct OBJECT IDENTIFIER ::= { iso(1) member-body(2)
 us(840) rsadsi(113549) pkcs(1) pkcs9(9)
 id-smime(16) 1 }

Freeman, et al. Standards Track [Page 68]

RFC 5055 SCVP December 2007

 id-ct-scvp-certValRequest OBJECT IDENTIFIER ::= { id-ct 10 }

 CVRequest ::= SEQUENCE {
 cvRequestVersion INTEGER DEFAULT 1,
 query Query,
 requestorRef [0] GeneralNames OPTIONAL,
 requestNonce [1] OCTET STRING OPTIONAL,
 requestorName [2] GeneralName OPTIONAL,
 responderName [3] GeneralName OPTIONAL,
 requestExtensions [4] Extensions OPTIONAL,
 signatureAlg [5] AlgorithmIdentifier OPTIONAL,
 hashAlg [6] OBJECT IDENTIFIER OPTIONAL,
 requestorText [7] UTF8String (SIZE (1..256)) OPTIONAL }

 Query ::= SEQUENCE {
 queriedCerts CertReferences,
 checks CertChecks,
 wantBack [1] WantBack OPTIONAL,
 validationPolicy ValidationPolicy,
 responseFlags ResponseFlags OPTIONAL,
 serverContextInfo [2] OCTET STRING OPTIONAL,
 validationTime [3] GeneralizedTime OPTIONAL,
 intermediateCerts [4] CertBundle OPTIONAL,
 revInfos [5] RevocationInfos OPTIONAL,
 producedAt [6] GeneralizedTime OPTIONAL,
 queryExtensions [7] Extensions OPTIONAL }

 CertReferences ::= CHOICE {
 pkcRefs [0] SEQUENCE SIZE (1..MAX) OF PKCReference,
 acRefs [1] SEQUENCE SIZE (1..MAX) OF ACReference }

 CertReference::= CHOICE {
 pkc PKCReference,
 ac ACReference }

 PKCReference ::= CHOICE {
 cert [0] Certificate,
 pkcRef [1] SCVPCertID }

 ACReference ::= CHOICE {
 attrCert [2] AttributeCertificate,
 acRef [3] SCVPCertID }

 SCVPCertID ::= SEQUENCE {
 certHash OCTET STRING,
 issuerSerial SCVPIssuerSerial,
 hashAlgorithm AlgorithmIdentifier DEFAULT { algorithm sha-1 } }

Freeman, et al. Standards Track [Page 69]

RFC 5055 SCVP December 2007

 SCVPIssuerSerial ::= SEQUENCE {
 issuer GeneralNames,
 serialNumber CertificateSerialNumber
 }

 ValidationPolicy ::= SEQUENCE {
 validationPolRef ValidationPolRef,
 validationAlg [0] ValidationAlg OPTIONAL,
 userPolicySet [1] SEQUENCE SIZE (1..MAX) OF OBJECT
 IDENTIFIER OPTIONAL,
 inhibitPolicyMapping [2] BOOLEAN OPTIONAL,
 requireExplicitPolicy [3] BOOLEAN OPTIONAL,
 inhibitAnyPolicy [4] BOOLEAN OPTIONAL,
 trustAnchors [5] TrustAnchors OPTIONAL,
 keyUsages [6] SEQUENCE OF KeyUsage OPTIONAL,
 extendedKeyUsages [7] SEQUENCE OF KeyPurposeId OPTIONAL,
 specifiedKeyUsages [8] SEQUENCE OF KeyPurposeId OPTIONAL }

 CertChecks ::= SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

 WantBack ::= SEQUENCE SIZE (1..MAX) OF OBJECT IDENTIFIER

 ValidationPolRef ::= SEQUENCE {
 valPolId OBJECT IDENTIFIER,
 valPolParams ANY DEFINED BY valPolId OPTIONAL }

 ValidationAlg ::= SEQUENCE {
 valAlgId OBJECT IDENTIFIER,
 parameters ANY DEFINED BY valAlgId OPTIONAL }

 NameValidationAlgParms ::= SEQUENCE {
 nameCompAlgId OBJECT IDENTIFIER,
 validationNames GeneralNames }

 TrustAnchors ::= SEQUENCE SIZE (1..MAX) OF PKCReference

 KeyAgreePublicKey ::= SEQUENCE {
 algorithm AlgorithmIdentifier,
 publicKey BIT STRING,
 macAlgorithm AlgorithmIdentifier,
 kDF AlgorithmIdentifier OPTIONAL }

 ResponseFlags ::= SEQUENCE {
 fullRequestInResponse [0] BOOLEAN DEFAULT FALSE,
 responseValidationPolByRef [1] BOOLEAN DEFAULT TRUE,
 protectResponse [2] BOOLEAN DEFAULT TRUE,
 cachedResponse [3] BOOLEAN DEFAULT TRUE }

Freeman, et al. Standards Track [Page 70]

RFC 5055 SCVP December 2007

 CertBundle ::= SEQUENCE SIZE (1..MAX) OF Certificate

 RevocationInfos ::= SEQUENCE SIZE (1..MAX) OF RevocationInfo

 RevocationInfo ::= CHOICE {
 crl [0] CertificateList,
 delta-crl [1] CertificateList,
 ocsp [2] OCSPResponse,
 other [3] OtherRevInfo }

 OtherRevInfo ::= SEQUENCE {
 riType OBJECT IDENTIFIER,
 riValue ANY DEFINED BY riType }

 -- SCVP Certificate Validation Response

 id-ct-scvp-certValResponse OBJECT IDENTIFIER ::= { id-ct 11 }

 CVResponse ::= SEQUENCE {
 cvResponseVersion INTEGER,
 serverConfigurationID INTEGER,
 producedAt GeneralizedTime,
 responseStatus ResponseStatus,
 respValidationPolicy [0] RespValidationPolicy OPTIONAL,
 requestRef [1] RequestReference OPTIONAL,
 requestorRef [2] GeneralNames OPTIONAL,
 requestorName [3] GeneralNames OPTIONAL,
 replyObjects [4] ReplyObjects OPTIONAL,
 respNonce [5] OCTET STRING OPTIONAL,
 serverContextInfo [6] OCTET STRING OPTIONAL,
 cvResponseExtensions [7] Extensions OPTIONAL,
 requestorText [8] UTF8String (SIZE (1..256)) OPTIONAL }

 ResponseStatus ::= SEQUENCE {
 statusCode CVStatusCode DEFAULT okay,
 errorMessage UTF8String OPTIONAL }

 CVStatusCode ::= ENUMERATED {
 okay (0),
 skipUnrecognizedItems (1),
 tooBusy (10),
 invalidRequest (11),
 internalError (12),
 badStructure (20),
 unsupportedVersion (21),
 abortUnrecognizedItems (22),
 unrecognizedSigKey (23),
 badSignatureOrMAC (24),

Freeman, et al. Standards Track [Page 71]

RFC 5055 SCVP December 2007

 unableToDecode (25),
 notAuthorized (26),
 unsupportedChecks (27),
 unsupportedWantBacks (28),
 unsupportedSignatureOrMAC (29),
 invalidSignatureOrMAC (30),
 protectedResponseUnsupported (31),
 unrecognizedResponderName (32),
 relayingLoop (40),
 unrecognizedValPol (50),
 unrecognizedValAlg (51),
 fullRequestInResponseUnsupported (52),
 fullPolResponseUnsupported (53),
 inhibitPolicyMappingUnsupported (54),
 requireExplicitPolicyUnsupported (55),
 inhibitAnyPolicyUnsupported (56),
 validationTimeUnsupported (57),
 unrecognizedCritQueryExt (63),
 unrecognizedCritRequestExt (64) }

 RespValidationPolicy ::= ValidationPolicy

 RequestReference ::= CHOICE {
 requestHash [0] HashValue, -- hash of CVRequest
 fullRequest [1] CVRequest }

 HashValue ::= SEQUENCE {
 algorithm AlgorithmIdentifier DEFAULT { algorithm sha-1 },
 value OCTET STRING }

 sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 oiw(14) secsig(3) algorithm(2) 26 }

 ReplyObjects ::= SEQUENCE SIZE (1..MAX) OF CertReply

 CertReply ::= SEQUENCE {
 cert CertReference,
 replyStatus ReplyStatus DEFAULT success,
 replyValTime GeneralizedTime,
 replyChecks ReplyChecks,
 replyWantBacks ReplyWantBacks,
 validationErrors [0] SEQUENCE SIZE (1..MAX) OF
 OBJECT IDENTIFIER OPTIONAL,
 nextUpdate [1] GeneralizedTime OPTIONAL,
 certReplyExtensions [2] Extensions OPTIONAL }

Freeman, et al. Standards Track [Page 72]

RFC 5055 SCVP December 2007

 ReplyStatus ::= ENUMERATED {
 success (0),
 malformedPKC (1),
 malformedAC (2),
 unavailableValidationTime (3),
 referenceCertHashFail (4),
 certPathConstructFail (5),
 certPathNotValid (6),
 certPathNotValidNow (7),
 wantBackUnsatisfied (8) }

 ReplyChecks ::= SEQUENCE OF ReplyCheck

 ReplyCheck ::= SEQUENCE {
 check OBJECT IDENTIFIER,
 status INTEGER DEFAULT 0 }

 ReplyWantBacks ::= SEQUENCE OF ReplyWantBack

 ReplyWantBack::= SEQUENCE {
 wb OBJECT IDENTIFIER,
 value OCTET STRING }

 CertBundles ::= SEQUENCE SIZE (1..MAX) OF CertBundle

 RevInfoWantBack ::= SEQUENCE {
 revocationInfo RevocationInfos,
 extraCerts CertBundle OPTIONAL }

 SCVPResponses ::= SEQUENCE OF ContentInfo

 -- SCVP Validation Policies Request

 id-ct-scvp-valPolRequest OBJECT IDENTIFIER ::= { id-ct 12 }

 ValPolRequest ::= SEQUENCE {
 vpRequestVersion INTEGER DEFAULT 1,
 requestNonce OCTET STRING }

 -- SCVP Validation Policies Response

 id-ct-scvp-valPolResponse OBJECT IDENTIFIER ::= { id-ct 13 }

 ValPolResponse ::= SEQUENCE {
 vpResponseVersion INTEGER,
 maxCVRequestVersion INTEGER,
 maxVPRequestVersion INTEGER,
 serverConfigurationID INTEGER,

Freeman, et al. Standards Track [Page 73]

RFC 5055 SCVP December 2007

 thisUpdate GeneralizedTime,
 nextUpdate GeneralizedTime OPTIONAL,
 supportedChecks CertChecks,
 supportedWantBacks WantBack,
 validationPolicies SEQUENCE OF OBJECT IDENTIFIER,
 validationAlgs SEQUENCE OF OBJECT IDENTIFIER,
 authPolicies SEQUENCE OF AuthPolicy,
 responseTypes ResponseTypes,
 defaultPolicyValues RespValidationPolicy,
 revocationInfoTypes RevocationInfoTypes,
 signatureGeneration SEQUENCE OF AlgorithmIdentifier,
 signatureVerification SEQUENCE OF AlgorithmIdentifier,
 hashAlgorithms SEQUENCE SIZE (1..MAX) OF
 OBJECT IDENTIFIER,
 serverPublicKeys SEQUENCE OF KeyAgreePublicKey
 OPTIONAL,
 clockSkew INTEGER DEFAULT 10,
 requestNonce OCTET STRING OPTIONAL }

 ResponseTypes ::= ENUMERATED {
 cached-only (0),
 non-cached-only (1),
 cached-and-non-cached (2) }

 RevocationInfoTypes ::= BIT STRING {
 fullCRLs (0),
 deltaCRLs (1),
 indirectCRLs (2),
 oCSPResponses (3) }

 AuthPolicy ::= OBJECT IDENTIFIER

 -- SCVP Check Identifiers

 id-stc OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 17 }

 id-stc-build-pkc-path OBJECT IDENTIFIER ::= { id-stc 1 }
 id-stc-build-valid-pkc-path OBJECT IDENTIFIER ::= { id-stc 2 }
 id-stc-build-status-checked-pkc-path
 OBJECT IDENTIFIER ::= { id-stc 3 }
 id-stc-build-aa-path OBJECT IDENTIFIER ::= { id-stc 4 }
 id-stc-build-valid-aa-path OBJECT IDENTIFIER ::= { id-stc 5 }
 id-stc-build-status-checked-aa-path
 OBJECT IDENTIFIER ::= { id-stc 6 }
 id-stc-status-check-ac-and-build-status-checked-aa-path
 OBJECT IDENTIFIER ::= { id-stc 7 }

Freeman, et al. Standards Track [Page 74]

RFC 5055 SCVP December 2007

 -- SCVP WantBack Identifiers

 id-swb OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 18 }

 id-swb-pkc-best-cert-path OBJECT IDENTIFIER ::= { id-swb 1 }
 id-swb-pkc-revocation-info OBJECT IDENTIFIER ::= { id-swb 2 }
 id-swb-pkc-public-key-info OBJECT IDENTIFIER ::= { id-swb 4 }
 id-swb-aa-cert-path OBJECT IDENTIFIER ::= { id-swb 5 }
 id-swb-aa-revocation-info OBJECT IDENTIFIER ::= { id-swb 6 }
 id-swb-ac-revocation-info OBJECT IDENTIFIER ::= { id-swb 7 }
 id-swb-relayed-responses OBJECT IDENTIFIER ::= { id-swb 9 }
 id-swb-pkc-cert OBJECT IDENTIFIER ::= { id-swb 10}
 id-swb-ac-cert OBJECT IDENTIFIER ::= { id-swb 11}
 id-swb-pkc-all-cert-paths OBJECT IDENTIFIER ::= { id-swb 12}
 id-swb-pkc-ee-revocation-info OBJECT IDENTIFIER ::= { id-swb 13}
 id-swb-pkc-CAs-revocation-info OBJECT IDENTIFIER ::= { id-swb 14}

 -- SCVP Validation Policy and Algorithm Identifiers

 id-svp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 19 }

 id-svp-defaultValPolicy OBJECT IDENTIFIER ::= { id-svp 1 }

 -- SCVP Basic Validation Algorithm Identifier

 id-svp-basicValAlg OBJECT IDENTIFIER ::= { id-svp 3 }

 -- SCVP Basic Validation Algorithm Errors

 id-bvae OBJECT IDENTIFIER ::= id-svp-basicValAlg

 id-bvae-expired OBJECT IDENTIFIER ::= { id-bvae 1 }
 id-bvae-not-yet-valid OBJECT IDENTIFIER ::= { id-bvae 2 }
 id-bvae-wrongTrustAnchor OBJECT IDENTIFIER ::= { id-bvae 3 }
 id-bvae-noValidCertPath OBJECT IDENTIFIER ::= { id-bvae 4 }
 id-bvae-revoked OBJECT IDENTIFIER ::= { id-bvae 5 }
 id-bvae-invalidKeyPurpose OBJECT IDENTIFIER ::= { id-bvae 9 }
 id-bvae-invalidKeyUsage OBJECT IDENTIFIER ::= { id-bvae 10 }
 id-bvae-invalidCertPolicy OBJECT IDENTIFIER ::= { id-bvae 11 }

 -- SCVP Name Validation Algorithm Identifier

 id-svp-nameValAlg OBJECT IDENTIFIER ::= { id-svp 2 }

Freeman, et al. Standards Track [Page 75]

RFC 5055 SCVP December 2007

 -- SCVP Name Validation Algorithm DN comparison algorithm

 id-nva-dnCompAlg OBJECT IDENTIFIER ::= { id-svp 4 }

 -- SCVP Name Validation Algorithm Errors

 id-nvae OBJECT IDENTIFIER ::= id-svp-nameValAlg

 id-nvae-name-mismatch OBJECT IDENTIFIER ::= { id-nvae 1 }
 id-nvae-no-name OBJECT IDENTIFIER ::= { id-nvae 2 }
 id-nvae-unknown-alg OBJECT IDENTIFIER ::= { id-nvae 3 }
 id-nvae-bad-name OBJECT IDENTIFIER ::= { id-nvae 4 }
 id-nvae-bad-name-type OBJECT IDENTIFIER ::= { id-nvae 5 }
 id-nvae-mixed-names OBJECT IDENTIFIER ::= { id-nvae 6 }

 -- SCVP Extended Key Usage Key Purpose Identifiers

 id-kp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3)
 dod(6) internet(1) security(5) mechanisms(5) pkix(7) 3 }

 id-kp-scvpServer OBJECT IDENTIFIER ::= { id-kp 15 }

 id-kp-scvpClient OBJECT IDENTIFIER ::= { id-kp 16 }

 END

9. Security Considerations

 For security considerations specific to the Cryptographic Message
 Syntax message formats, see [CMS]. For security considerations
 specific to the process of PKI certification path validation, see
 [PKIX-1].

 A client that trusts a server’s response for validation of a
 certificate inherently trusts that server as much as it would trust
 its own validation software. This means that if an attacker
 compromises a trusted SCVP server, the attacker can change the
 validation processing for every client that relies on that server.
 Thus, an SCVP server must be protected at least as well as the trust
 anchors that the SCVP server trusts.

 Clients MUST verify that the response matches their original request.
 Clients need to ensure that the server has performed the appropriate
 checks for the correct certificates under the requested validation
 policy for the specified validation time, and that the response
 includes the requested wantBacks and meets the client’s freshness
 requirements.

Freeman, et al. Standards Track [Page 76]

RFC 5055 SCVP December 2007

 When the SCVP response is used to determine the validity of a
 certificate, the client MUST validate the digital signature or MAC on
 the response to ensure that the expected SCVP server generated it.
 If the client does not check the digital signature or MAC on the
 response, a man-in-the-middle attack could fool the client into
 believing modified responses from the server or responses to
 questions the client did not ask.

 If the client does not include a requestNonce item, or if the client
 does not check that the requestNonce in the response matches the
 value in the request, an attacker can replay previous responses from
 the SCVP server.

 If the server does not require some sort of authorization (such as
 signed requests), an attacker can get the server to respond to
 arbitrary requests. Such responses may give the attacker information
 about weaknesses in the server or about the timeliness of the
 server’s checking. This information may be valuable for a future
 attack.

 If the server uses the serverContextInfo item to indicate some server
 state associated with a requestor, implementers must take appropriate
 measures against denial-of-service attacks where an attacker sends in
 a lot of requests at one time to force the server to keep a lot of
 state information.

 SCVP does not include any confidentiality mechanisms. If
 confidentiality is needed, it can be achieved with a lower-layer
 security protocol such as TLS [TLS].

 If an SCVP client is not operating on a network with good physical
 protection, it must ensure that there is integrity over the SCVP
 request-response pair. The client can ensure integrity by using a
 protected transport such as TLS. It can ensure integrity by using
 MACs or digital signatures to individually protect the request and
 response messages.

 If an SCVP client populates the userPolicySet in a request with a
 value other than anyPolicy, but does not set the
 requireExplicitPolicy flag, the server may return an affirmative
 answer for paths that do not satisfy any of the specified policies.
 In general, when a client populates the userPolicySet in a request
 with a value other than anyPolicy, the requireExplicitPolicy flag
 should also be set. This guarantees that all valid paths satisfy at
 least one of the requested policies.

Freeman, et al. Standards Track [Page 77]

RFC 5055 SCVP December 2007

 In SCVP, historical validation of a certificate returns the known
 status of the certificate at the time specified in validationTime.
 This may be used to demonstrate due diligence, but does not
 necessarily provide the most complete information. A certificate may
 have been revoked after the time specified in validationTime, but the
 revocation notice may specify an invalidity date that precedes the
 validationTime. The SCVP server would provide an affirmative
 response even though the most current information available indicates
 the certificate should not be trusted at that time. SCVP clients may
 wish to specify a validationTime later than the actual time of
 interest to mitigate this risk.

10. IANA Considerations

 The details of SCVP requests and responses are communicated using
 object identifiers (OIDs). The objects are defined in an arc
 delegated by IANA to the PKIX Working Group. This document also
 includes four MIME type registrations in Appendix A. No further
 action by IANA is necessary for this document or any anticipated
 updates.

11. References

11.1. Normative References

 [STDWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
 3852, July 2004.

 [OCSP] Myers, M., Ankney, R., Malpani, A., Galperin, S., and
 C. Adams, "X.509 Internet Public Key Infrastructure
 Online Certificate Status Protocol - OCSP", RFC 2560,
 June 1999.

 [PKIX-1] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [PKIX-AC] Farrell, S. and R. Housley, "An Internet Attribute
 Certificate Profile for Authorization", RFC 3281, April
 2002.

Freeman, et al. Standards Track [Page 78]

RFC 5055 SCVP December 2007

 [PKIX-ALG] Bassham, L., Polk, W., and R. Housley, "Algorithms and
 Identifiers for the Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation
 List (CRL) Profile", RFC 3279, April 2002.

 [PKIX-ALG2] Schaad, J., Kaliski, B., and R. Housley, "Additional
 Algorithms and Identifiers for RSA Cryptography for use
 in the Internet X.509 Public Key Infrastructure
 Certificate and Certificate Revocation List (CRL)
 Profile", RFC 4055, June 2005.

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [ESS] Hoffman, P., Ed., "Enhanced Security Services for
 S/MIME", RFC 2634, June 1999.

 [SMIME-CERT] Ramsdell, B., Ed., "Secure/Multipurpose Internet Mail
 Extensions (S/MIME) Version 3.1 Certificate Handling",
 RFC 3850, July 2004.

 [IKE] Kaufman, C., Ed., "Internet Key Exchange (IKEv2)
 Protocol", RFC 4306, December 2005.

 [HTTP] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

11.2. Informative References

 [IKE-GROUPS] Kivinen, T. and M. Kojo, "More Modular Exponential
 (MODP) Diffie-Hellman groups for Internet Key Exchange
 (IKE)", RFC 3526, May 2003.

 [RQMTS] Pinkas, D. and R. Housley, "Delegated Path Validation
 and Delegated Path Discovery Protocol Requirements",
 RFC 3379, September 2002.

 [TLS] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.1", RFC 4346, April
 2006.

Freeman, et al. Standards Track [Page 79]

RFC 5055 SCVP December 2007

12. Acknowledgments

 The lively debate in the PKIX Working Group has made a significant
 impact on this protocol. Special thanks to the following for their
 contributions to this document and diligence in greatly improving it.

 Paul Hoffman
 Phillip Hallam-Baker
 Mike Myers
 Frank Balluffi
 Ameya Talwalkar
 John Thielens
 Peter Sylvester
 Yuriy Dzambasow
 Sean P. Turner
 Wen-Cheng Wang
 Francis Dupont
 Dave Engberg
 Faisal Maqsood

 Thanks also to working group chair Steve Kent for his support and
 help.

Freeman, et al. Standards Track [Page 80]

RFC 5055 SCVP December 2007

Appendix A. MIME Media Type Registrations

 Four MIME media type registrations are provided in this appendix.

A.1. application/scvp-cv-request

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/scvp-cv-request

 MIME media type name: application

 MIME subtype name: scvp-cv-request

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary

 Security considerations: Carries a request for information. This
 request may optionally be cryptographically protected.

 Interoperability considerations: None

 Published specification: RFC 5055

 Applications that use this media type: SCVP clients sending
 certificate validation requests

 Additional information:

 Magic number(s): None
 File extension(s): .SCQ
 Macintosh File Type Code(s): None

 Person & email address to contact for further information:
 Ambarish Malpani <ambarish@yahoo.com>

 Intended usage: COMMON

 Restrictions on usage: This media type can be used with any protocol
 that can transport digitally signed objects.

 Author: Ambarish Malpani <ambarish@yahoo.com>

 Change controller: IESG

Freeman, et al. Standards Track [Page 81]

RFC 5055 SCVP December 2007

A.2. application/scvp-cv-response

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/scvp-cv-response

 MIME media type name: application

 MIME subtype name: scvp-cv-response

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary

 Security considerations: The client may require that this response be
 cryptographically protected, or may choose to use a secure transport
 mechanism. DPD responses may be unprotected, but the client
 validates the information provided in the request.

 Interoperability considerations: None

 Published specification: RFC 5055

 Applications that use this media type: SCVP servers responding to
 certificate validation requests

 Additional information:

 Magic number(s): None
 File extension(s): .SCS
 Macintosh File Type Code(s): none

 Person & email address to contact for further information:
 Ambarish Malpani <ambarish@yahoo.com>

 Intended usage: COMMON
 Restrictions on usage: This media type can be used with any protocol
 that can transport digitally signed objects.

 Author: Ambarish Malpani <ambarish@yahoo.com>

 Change controller: IESG

Freeman, et al. Standards Track [Page 82]

RFC 5055 SCVP December 2007

A.3. application/scvp-vp-request

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/scvp-vp-request

 MIME media type name: application

 MIME subtype name: scvp-vp-request

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary

 Security considerations: Carries a request for information.

 Interoperability considerations: None

 Published specification: RFC 5055

 Applications that use this media type: SCVP clients sending
 validation policy requests

 Additional information:

 Magic number(s): None
 File extension(s): .SPQ
 Macintosh File Type Code(s): none

 Person & email address to contact for further information:
 Ambarish Malpani <ambarish@yahoo.com>

 Intended usage: COMMON

 Restrictions on usage: None

 Author: Ambarish Malpani <ambarish@yahoo.com>

 Change controller: IESG

Freeman, et al. Standards Track [Page 83]

RFC 5055 SCVP December 2007

A.4. application/scvp-vp-response

 To: ietf-types@iana.org
 Subject: Registration of MIME media type application/scvp-vp-response

 MIME media type name: application

 MIME subtype name: scvp-vp-response

 Required parameters: None

 Optional parameters: None

 Encoding considerations: Binary

 Security considerations: None

 Interoperability considerations: None

 Published specification: RFC 5055

 Applications that use this media type: SCVP servers responding to
 validation policy requests

 Additional information:

 Magic number(s): None
 File extension(s): .SPP
 Macintosh File Type Code(s): none

 Person & email address to contact for further information:
 Ambarish Malpani <ambarish@yahoo.com>

 Intended usage: COMMON

 Restrictions on usage: This media type can be used with any protocol
 that can transport digitally signed objects.

 Author: Ambarish Malpani <ambarish@yahoo.com>

 Change controller: IESG

Freeman, et al. Standards Track [Page 84]

RFC 5055 SCVP December 2007

Appendix B. SCVP over HTTP

 This appendix describes the formatting and transportation conventions
 for the SCVP request and response when carried by HTTP.

 In order for SCVP clients and servers using HTTP to interoperate, the
 following rules apply.

 - Clients MUST use the POST method to submit their requests.

 - Servers MUST use the 200 response code for successful responses.

 - Clients MAY attempt to send HTTPS requests using TLS 1.0 or later,
 although servers are not required to support TLS.

 - Servers MUST NOT assume client support for any type of HTTP
 authentication such as cookies, Basic authentication, or Digest
 authentication.

 - Clients and servers are expected to follow the other rules and
 restrictions in [HTTP]. Note that some of those rules are for
 HTTP methods other than POST; clearly, only the rules that apply
 to POST are relevant for this specification.

B.1. SCVP Request

 An SCVP request using the POST method is constructed as follows:

 The Content-Type header MUST have the value "application/scvp-cv-
 request".

 The body of the message is the binary value of the DER encoding of
 the CVRequest, wrapped in a CMS body as described in Section 3.

B.2. SCVP Response

 An HTTP-based SCVP response is composed of the appropriate HTTP
 headers, followed by the binary value of the BER encoding of the
 CVResponse, wrapped in a CMS body as described in Section 4.

 The Content-Type header MUST have the value "application/scvp-cv-
 response".

Freeman, et al. Standards Track [Page 85]

RFC 5055 SCVP December 2007

B.3. SCVP Policy Request

 An SCVP request using the POST method is constructed as follows:

 The Content-Type header MUST have the value "application/scvp-vp-
 request".

 The body of the message is the binary value of the BER encoding of
 the ValPolRequest, wrapped in a CMS body as described in Section 5.

B.4. SCVP Policy Response

 An HTTP-based SCVP policy response is composed of the appropriate
 HTTP headers, followed by the binary value of the DER encoding of the
 ValPolResponse, wrapped in a CMS body as described in Section 6. The
 Content-Type header MUST have the value "application/scvp-vp-
 response".

Freeman, et al. Standards Track [Page 86]

RFC 5055 SCVP December 2007

Authors’ Addresses

 Trevor Freeman
 Microsoft Corporation,
 One Microsoft Way
 Redmond, WA 98052
 USA.
 EMail: trevorf@microsoft.com

 Russell Housley
 Vigil Security, LLC
 918 Spring Knoll Drive
 Herndon, VA 20170
 USA
 EMail: housley@vigilsec.com

 Ambarish Malpani
 Malpani Consulting Services
 EMail: ambarish@yahoo.com

 David Cooper
 National Institute of Standards and Technology
 100 Bureau Drive, Mail Stop 8930
 Gaithersburg, MD 20899-8930
 EMail: david.cooper@nist.gov

 Tim Polk
 National Institute of Standards and Technology
 100 Bureau Drive, Mail Stop 8930
 Gaithersburg, MD 20899-8930
 EMail: wpolk@nist.gov

Freeman, et al. Standards Track [Page 87]

RFC 5055 SCVP December 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Freeman, et al. Standards Track [Page 88]

