
Network Working Group S. Legg
Request for Comments: 4911 eB2Bcom
Category: Experimental July 2007

 Encoding Instructions for the
 Robust XML Encoding Rules (RXER)

Status of This Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines encoding instructions that may be used in an
 Abstract Syntax Notation One (ASN.1) specification to alter how ASN.1
 values are encoded by the Robust XML Encoding Rules (RXER) and
 Canonical Robust XML Encoding Rules (CRXER), for example, to encode a
 component of an ASN.1 value as an Extensible Markup Language (XML)
 attribute rather than as a child element. Some of these encoding
 instructions also affect how an ASN.1 specification is translated
 into an Abstract Syntax Notation X (ASN.X) specification. Encoding
 instructions that allow an ASN.1 specification to reference
 definitions in other XML schema languages are also defined.

Legg Experimental [Page 1]

RFC 4911 Encoding Instructions for RXER July 2007

Table of Contents

 1. Introduction ..3
 2. Conventions ...3
 3. Definitions ...4
 4. Notation for RXER Encoding Instructions4
 5. Component Encoding Instructions6
 6. Reference Encoding Instructions8
 7. Expanded Names of Components10
 8. The ATTRIBUTE Encoding Instruction11
 9. The ATTRIBUTE-REF Encoding Instruction12
 10. The COMPONENT-REF Encoding Instruction13
 11. The ELEMENT-REF Encoding Instruction16
 12. The LIST Encoding Instruction17
 13. The NAME Encoding Instruction19
 14. The REF-AS-ELEMENT Encoding Instruction19
 15. The REF-AS-TYPE Encoding Instruction20
 16. The SCHEMA-IDENTITY Encoding Instruction22
 17. The SIMPLE-CONTENT Encoding Instruction22
 18. The TARGET-NAMESPACE Encoding Instruction23
 19. The TYPE-AS-VERSION Encoding Instruction24
 20. The TYPE-REF Encoding Instruction25
 21. The UNION Encoding Instruction26
 22. The VALUES Encoding Instruction27
 23. Insertion Encoding Instructions29
 24. The VERSION-INDICATOR Encoding Instruction32
 25. The GROUP Encoding Instruction34
 25.1. Unambiguous Encodings36
 25.1.1. Grammar Construction37
 25.1.2. Unique Component Attribution47
 25.1.3. Deterministic Grammars52
 25.1.4. Attributes in Unknown Extensions54
 26. Security Considerations56
 27. References ..56
 27.1. Normative References56
 27.2. Informative References57
 Appendix A. GROUP Encoding Instruction Examples58
 Appendix B. Insertion Encoding Instruction Examples74
 Appendix C. Extension and Versioning Examples87

Legg Experimental [Page 2]

RFC 4911 Encoding Instructions for RXER July 2007

1. Introduction

 This document defines encoding instructions [X.680-1] that may be
 used in an Abstract Syntax Notation One (ASN.1) [X.680] specification
 to alter how ASN.1 values are encoded by the Robust XML Encoding
 Rules (RXER) [RXER] and Canonical Robust XML Encoding Rules (CRXER)
 [RXER], for example, to encode a component of an ASN.1 value as an
 Extensible Markup Language (XML) [XML10] attribute rather than as a
 child element. Some of these encoding instructions also affect how
 an ASN.1 specification is translated into an Abstract Syntax Notation
 X (ASN.X) specification [ASN.X].

 This document also defines encoding instructions that allow an ASN.1
 specification to incorporate the definitions of types, elements, and
 attributes in specifications written in other XML schema languages.
 References to XML Schema [XSD1] types, elements, and attributes,
 RELAX NG [RNG] named patterns and elements, and XML document type
 definition (DTD) [XML10] element types are supported.

 In most cases, the effect of an encoding instruction is only briefly
 mentioned in this document. The precise effects of these encoding
 instructions are described fully in the specifications for RXER
 [RXER] and ASN.X [ASN.X], at the points where they apply.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED" and "MAY" in this document are
 to be interpreted as described in BCP 14, RFC 2119 [BCP14]. The key
 word "OPTIONAL" is exclusively used with its ASN.1 meaning.

 Throughout this document "type" shall be taken to mean an ASN.1 type,
 and "value" shall be taken to mean an ASN.1 abstract value, unless
 qualified otherwise.

 A reference to an ASN.1 production [X.680] (e.g., Type, NamedType) is
 a reference to text in an ASN.1 specification corresponding to that
 production. Throughout this document, "component" is synonymous with
 NamedType.

 This document uses the namespace prefix "xsi:" to stand for the
 namespace name [XMLNS10] "http://www.w3.org/2001/XMLSchema-instance".

 Example ASN.1 definitions in this document are assumed to be defined
 in an ASN.1 module with a TagDefault of "AUTOMATIC TAGS" and an
 EncodingReferenceDefault [X.680-1] of "RXER INSTRUCTIONS".

Legg Experimental [Page 3]

RFC 4911 Encoding Instructions for RXER July 2007

3. Definitions

 The following definition of base type is used in specifying a number
 of encoding instructions.

 Definition (base type): If a type, T, is a constrained type, then the
 base type of T is the base type of the type that is constrained; else
 if T is a prefixed type, then the base type of T is the base type of
 the type that is prefixed; else if T is a type notation that
 references or denotes another type (i.e., DefinedType,
 ObjectClassFieldType, SelectionType, TypeFromObject, or
 ValueSetFromObjects), then the base type of T is the base type of the
 type that is referenced or denoted; otherwise, the base type of T is
 T itself.

 Aside: A tagged type is a special case of a prefixed type.

4. Notation for RXER Encoding Instructions

 The grammar of ASN.1 permits the application of encoding instructions
 [X.680-1], through type prefixes and encoding control sections, that
 modify how abstract values are encoded by nominated encoding rules.

 The generic notation for type prefixes and encoding control sections
 is defined by the ASN.1 basic notation [X.680] [X.680-1], and
 includes an encoding reference to identify the specific encoding
 rules that are affected by the encoding instruction.

 The encoding reference that identifies the Robust XML Encoding rules
 is literally RXER. An RXER encoding instruction applies equally to
 both RXER and CRXER encodings.

 The specific notation for an encoding instruction for a specific set
 of encoding rules is left to the specification of those encoding
 rules. Consequently, this companion document to the RXER
 specification [RXER] defines the notation for RXER encoding
 instructions. Specifically, it elaborates the EncodingInstruction
 and EncodingInstructionAssignmentList placeholder productions of the
 ASN.1 basic notation.

 In the context of the RXER encoding reference, the
 EncodingInstruction production is defined as follows, using the
 conventions of the ASN.1 basic notation:

Legg Experimental [Page 4]

RFC 4911 Encoding Instructions for RXER July 2007

 EncodingInstruction ::=
 AttributeInstruction |
 AttributeRefInstruction |
 ComponentRefInstruction |
 ElementRefInstruction |
 GroupInstruction |
 InsertionsInstruction |
 ListInstruction |
 NameInstruction |
 RefAsElementInstruction |
 RefAsTypeInstruction |
 SimpleContentInstruction |
 TypeAsVersionInstruction |
 TypeRefInstruction |
 UnionInstruction |
 ValuesInstruction |
 VersionIndicatorInstruction

 In the context of the RXER encoding reference, the
 EncodingInstructionAssignmentList production (which only appears in
 an encoding control section) is defined as follows:

 EncodingInstructionAssignmentList ::=
 SchemaIdentityInstruction ?
 TargetNamespaceInstruction ?
 TopLevelComponents ?

 TopLevelComponents ::= TopLevelComponent TopLevelComponents ?

 TopLevelComponent ::= "COMPONENT" NamedType

 Definition (top-level NamedType): A NamedType is a top-level
 NamedType (equivalently, a top-level component) if and only if it is
 the NamedType in a TopLevelComponent. A NamedType nested within the
 Type of the NamedType of a TopLevelComponent is not itself a
 top-level NamedType.

 Aside: Specification writers should note that non-trivial types
 defined within a top-level NamedType will not be visible to ASN.1
 tools that do not understand RXER.

 Although a top-level NamedType only appears in an RXER encoding
 control section, the default encoding reference for the module
 [X.680-1] still applies when parsing a top-level NamedType.

 Each top-level NamedType within a module SHALL have a distinct
 identifier.

Legg Experimental [Page 5]

RFC 4911 Encoding Instructions for RXER July 2007

 The NamedType production is defined by the ASN.1 basic notation. The
 other productions are described in subsequent sections and make use
 of the following productions:

 NCNameValue ::= Value

 AnyURIValue ::= Value

 QNameValue ::= Value

 NameValue ::= Value

 The Value production is defined by the ASN.1 basic notation.

 The governing type for the Value in an NCNameValue is the NCName type
 from the AdditionalBasicDefinitions module [RXER].

 The governing type for the Value in an AnyURIValue is the AnyURI type
 from the AdditionalBasicDefinitions module.

 The governing type for the Value in a QNameValue is the QName type
 from the AdditionalBasicDefinitions module.

 The governing type for the Value in a NameValue is the Name type from
 the AdditionalBasicDefinitions module.

 The Value in an NCNameValue, AnyURIValue, QNameValue, or NameValue
 SHALL NOT be a DummyReference [X.683] and SHALL NOT textually contain
 a nested DummyReference.

 Aside: Thus, encoding instructions are not permitted to be
 parameterized in any way. This restriction will become important
 if a future specification for ASN.X explicitly represents
 parameterized definitions and parameterized references instead of
 expanding out parameterized references as in the current
 specification. A parameterized definition could not be directly
 translated into ASN.X if it contained encoding instructions that
 were not fully specified.

5. Component Encoding Instructions

 Certain of the RXER encoding instructions are categorized as
 component encoding instructions. The component encoding instructions
 are the ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
 NAME, REF-AS-ELEMENT, SIMPLE-CONTENT, TYPE-AS-VERSION, and
 VERSION-INDICATOR encoding instructions (whose notations are
 described respectively by AttributeInstruction,
 AttributeRefInstruction, ComponentRefInstruction, GroupInstruction,

Legg Experimental [Page 6]

RFC 4911 Encoding Instructions for RXER July 2007

 ElementRefInstruction, NameInstruction, RefAsElementInstruction,
 SimpleContentInstruction, TypeAsVersionInstruction, and
 VersionIndicatorInstruction).

 The Type in the EncodingPrefixedType for a component encoding
 instruction SHALL be either:

 (1) the Type in a NamedType, or

 (2) the Type in an EncodingPrefixedType in a PrefixedType in a
 BuiltinType in a Type that is one of (1) to (4), or

 (3) the Type in an TaggedType in a PrefixedType in a BuiltinType in a
 Type that is one of (1) to (4), or

 (4) the Type in a ConstrainedType (excluding a TypeWithConstraint) in
 a Type that is one of (1) to (4).

 Aside: The effect of this condition is to force the component
 encoding instructions to be textually within the NamedType to
 which they apply. Only case (2) can be true on the first
 iteration as the Type belongs to an EncodingPrefixedType; however,
 any of (1) to (4) can be true on subsequent iterations.

 Case (4) is not permitted when the encoding instruction is the
 ATTRIBUTE-REF, COMPONENT-REF, ELEMENT-REF, or REF-AS-ELEMENT encoding
 instruction.

 The NamedType in case (1) is said to be "subject to" the component
 encoding instruction.

 A top-level NamedType SHALL NOT be subject to an ATTRIBUTE-REF,
 COMPONENT-REF, GROUP, ELEMENT-REF, REF-AS-ELEMENT, or SIMPLE-CONTENT
 encoding instruction.

 Aside: This condition does not preclude these encoding
 instructions being used on a nested NamedType.

 A NamedType SHALL NOT be subject to two or more component encoding
 instructions of the same kind, e.g., a NamedType is not permitted to
 be subject to two NAME encoding instructions.

 The ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
 REF-AS-ELEMENT, SIMPLE-CONTENT, and TYPE-AS-VERSION encoding
 instructions are mutually exclusive. The NAME, ATTRIBUTE-REF,
 COMPONENT-REF, ELEMENT-REF, and REF-AS-ELEMENT encoding instructions
 are mutually exclusive. A NamedType SHALL NOT be subject to two or
 more encoding instructions that are mutually exclusive.

Legg Experimental [Page 7]

RFC 4911 Encoding Instructions for RXER July 2007

 A SelectionType [X.680] SHALL NOT be used to select the Type from a
 NamedType that is subject to an ATTRIBUTE-REF, COMPONENT-REF,
 ELEMENT-REF or REF-AS-ELEMENT encoding instruction. The other
 component encoding instructions are not inherited by the type denoted
 by a SelectionType.

 Definition (attribute component): An attribute component is a
 NamedType that is subject to an ATTRIBUTE or ATTRIBUTE-REF encoding
 instruction, or subject to a COMPONENT-REF encoding instruction that
 references a top-level NamedType that is subject to an ATTRIBUTE
 encoding instruction.

 Definition (element component): An element component is a NamedType
 that is not subject to an ATTRIBUTE, ATTRIBUTE-REF, GROUP, or
 SIMPLE-CONTENT encoding instruction, and not subject to a
 COMPONENT-REF encoding instruction that references a top-level
 NamedType that is subject to an ATTRIBUTE encoding instruction.

 Aside: A NamedType subject to a GROUP or SIMPLE-CONTENT encoding
 instruction is neither an attribute component nor an element
 component.

6. Reference Encoding Instructions

 Certain of the RXER encoding instructions are categorized as
 reference encoding instructions. The reference encoding instructions
 are the ATTRIBUTE-REF, COMPONENT-REF, ELEMENT-REF, REF-AS-ELEMENT,
 REF-AS-TYPE, and TYPE-REF encoding instructions (whose notations are
 described respectively by AttributeRefInstruction,
 ComponentRefInstruction, ElementRefInstruction,
 RefAsElementInstruction, RefAsTypeInstruction, and
 TypeRefInstruction). These encoding instructions (except
 COMPONENT-REF) allow an ASN.1 specification to incorporate the
 definitions of types, elements, and attributes in specifications
 written in other XML schema languages, through implied constraints on
 the markup that may appear in values of the Markup ASN.1 type from
 the AdditionalBasicDefinitions module [RXER] (for ELEMENT-REF,
 REF-AS-ELEMENT, REF-AS-TYPE, and TYPE-REF) or the UTF8String type
 (for ATTRIBUTE-REF). References to XML Schema [XSD1] types,
 elements, and attributes, RELAX NG [RNG] named patterns and elements,
 and XML document type definition (DTD) [XML10] element types are
 supported. References to ASN.1 types and top-level components are
 also permitted. The COMPONENT-REF encoding instruction provides a
 more direct method of referencing a top-level component.

 The Type in the EncodingPrefixedType for an ELEMENT-REF,
 REF-AS-ELEMENT, REF-AS-TYPE, or TYPE-REF encoding instruction SHALL
 be either:

Legg Experimental [Page 8]

RFC 4911 Encoding Instructions for RXER July 2007

 (1) a ReferencedType that is a DefinedType that is a typereference
 (not a DummyReference) or ExternalTypeReference that references
 the Markup ASN.1 type from the AdditionalBasicDefinitions module
 [RXER], or

 (2) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (3), or

 (3) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (3) and the EncodingPrefix in the
 EncodingPrefixedType does not contain a reference encoding
 instruction.

 Aside: Case (3) and similar cases for the ATTRIBUTE-REF and
 COMPONENT-REF encoding instructions have the effect of making the
 reference encoding instructions mutually exclusive as well as
 singly occurring.

 With respect to the REF-AS-TYPE and TYPE-REF encoding instructions,
 the DefinedType in case (1) is said to be "subject to" the encoding
 instruction.

 The restrictions on the Type in the EncodingPrefixedType for an
 ATTRIBUTE-REF encoding instruction are specified in Section 9. The
 restrictions on the Type in the EncodingPrefixedType for a
 COMPONENT-REF encoding instruction are specified in Section 10.

 The reference encoding instructions make use of a common production
 defined as follows:

 RefParameters ::= ContextParameter ?

 ContextParameter ::= "CONTEXT" AnyURIValue

 A RefParameters instance provides extra information about a reference
 to a definition. A ContextParameter is used when a reference is
 ambiguous, i.e., refers to definitions in more than one schema
 document or external DTD subset. This situation would occur, for
 example, when importing types with the same name from independently
 developed XML Schemas defined without a target namespace [XSD1].
 When used in conjunction with a reference to an element type in an
 external DTD subset, the AnyURIValue in the ContextParameter is the
 system identifier (a Uniform Resource Identifier or URI [URI]) of the
 external DTD subset; otherwise, the AnyURIValue is a URI that
 indicates the intended schema document, either an XML Schema
 specification, a RELAX NG specification, or an ASN.1 or ASN.X
 specification.

Legg Experimental [Page 9]

RFC 4911 Encoding Instructions for RXER July 2007

7. Expanded Names of Components

 Each NamedType has an associated expanded name [XMLNS10], determined
 as follows:

 (1) if the NamedType is subject to a NAME encoding instruction, then
 the local name of the expanded name is the character string
 specified by the NCNameValue of the NAME encoding instruction,

 (2) else if the NamedType is subject to a COMPONENT-REF encoding
 instruction, then the expanded name is the same as the expanded
 name of the referenced top-level NamedType,

 (3) else if the NamedType is subject to an ATTRIBUTE-REF or
 ELEMENT-REF encoding instruction, then the namespace name of the
 expanded name is equal to the namespace-name component of the
 QNameValue of the encoding instruction, and the local name is
 equal to the local-name component of the QNameValue,

 (4) else if the NamedType is subject to a REF-AS-ELEMENT encoding
 instruction, then the local name of the expanded name is the
 LocalPart [XMLNS10] of the qualified name specified by the
 NameValue of the encoding instruction,

 (5) otherwise, the local name of the expanded name is the identifier
 of the NamedType.

 In cases (1) and (5), if the NamedType is a top-level NamedType and
 the module containing the NamedType has a TARGET-NAMESPACE encoding
 instruction, then the namespace name of the expanded name is the
 character string specified by the AnyURIValue of the TARGET-NAMESPACE
 encoding instruction; otherwise, the namespace name has no value.

 Aside: Thus, the TARGET-NAMESPACE encoding instruction applies to
 a top-level NamedType but not to any other NamedType.

 In case (4), if the encoding instruction contains a Namespace, then
 the namespace name of the expanded name is the character string
 specified by the AnyURIValue of the Namespace; otherwise, the
 namespace name has no value.

 The expanded names for the attribute components of a CHOICE,
 SEQUENCE, or SET type MUST be distinct. The expanded names for the
 components of a CHOICE, SEQUENCE, or SET type that are not attribute
 components MUST be distinct. These tests are applied after the
 COMPONENTS OF transformation specified in X.680, Clause 24.4 [X.680].

Legg Experimental [Page 10]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: Two components of the same CHOICE, SEQUENCE, or SET type
 may have the same expanded name if one of them is an attribute
 component and the other is not. Note that the "not" case includes
 components that are subject to a GROUP or SIMPLE-CONTENT encoding
 instruction.

 The expanded name of a top-level NamedType subject to an ATTRIBUTE
 encoding instruction MUST be distinct from the expanded name of every
 other top-level NamedType subject to an ATTRIBUTE encoding
 instruction in the same module.

 The expanded name of a top-level NamedType not subject to an
 ATTRIBUTE encoding instruction MUST be distinct from the expanded
 name of every other top-level NamedType not subject to an ATTRIBUTE
 encoding instruction in the same module.

 Aside: Two top-level components may have the same expanded name if
 one of them is an attribute component and the other is not.

8. The ATTRIBUTE Encoding Instruction

 The ATTRIBUTE encoding instruction causes an RXER encoder to encode a
 value of the component to which it is applied as an XML attribute
 instead of as a child element.

 The notation for an ATTRIBUTE encoding instruction is defined as
 follows:

 AttributeInstruction ::= "ATTRIBUTE"

 The base type of the type of a NamedType that is subject to an
 ATTRIBUTE encoding instruction SHALL NOT be:

 (1) a CHOICE, SET, or SET OF type, or

 (2) a SEQUENCE type other than the one defining the QName type from
 the AdditionalBasicDefinitions module [RXER] (i.e., QName is
 allowed), or

 (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
 LIST encoding instruction, or

 (4) an open type.

Legg Experimental [Page 11]

RFC 4911 Encoding Instructions for RXER July 2007

 Example

 PersonalDetails ::= SEQUENCE {
 firstName [ATTRIBUTE] UTF8String,
 middleName [ATTRIBUTE] UTF8String,
 surname [ATTRIBUTE] UTF8String
 }

9. The ATTRIBUTE-REF Encoding Instruction

 The ATTRIBUTE-REF encoding instruction causes an RXER encoder to
 encode a value of the component to which it is applied as an XML
 attribute instead of as a child element, where the attribute’s name
 is a qualified name of the attribute declaration referenced by the
 encoding instruction. In addition, the ATTRIBUTE-REF encoding
 instruction causes values of the UTF8String type to be restricted to
 conform to the type of the attribute declaration.

 The notation for an ATTRIBUTE-REF encoding instruction is defined as
 follows:

 AttributeRefInstruction ::=
 "ATTRIBUTE-REF" QNameValue RefParameters

 Taken together, the QNameValue and the ContextParameter in the
 RefParameters (if present) MUST reference an XML Schema attribute
 declaration or a top-level NamedType that is subject to an ATTRIBUTE
 encoding instruction.

 The type of a referenced XML Schema attribute declaration SHALL NOT
 be, either directly or by derivation, the XML Schema type QName,
 NOTATION, ENTITY, ENTITIES, or anySimpleType.

 Aside: Values of these types require information from the context
 of the attribute for interpretation. Because an ATTRIBUTE-REF
 encoding instruction is restricted to prefixing the ASN.1
 UTF8String type, there is no mechanism to capture such context.

 The type of a referenced top-level NamedType SHALL NOT be, either
 directly or by subtyping, the QName type from the
 AdditionalBasicDefinitions module [RXER].

 The Type in the EncodingPrefixedType for an ATTRIBUTE-REF encoding
 instruction SHALL be either:

 (1) the UTF8String type, or

Legg Experimental [Page 12]

RFC 4911 Encoding Instructions for RXER July 2007

 (2) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (3), or

 (3) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (3) and the EncodingPrefix in the
 EncodingPrefixedType does not contain a reference encoding
 instruction.

 The identifier of a NamedType subject to an ATTRIBUTE-REF encoding
 instruction does not contribute to the name of attributes in an RXER
 encoding. For the sake of consistency, the identifier SHOULD, where
 possible, be the same as the local name of the referenced attribute
 declaration.

10. The COMPONENT-REF Encoding Instruction

 The ASN.1 basic notation does not have a concept of a top-level
 NamedType and therefore does not have a mechanism to reference a
 top-level NamedType. The COMPONENT-REF encoding instruction provides
 a way to specify that a NamedType within a combining type definition
 is equivalent to a referenced top-level NamedType.

 The notation for a COMPONENT-REF encoding instruction is defined as
 follows:

 ComponentRefInstruction ::= "COMPONENT-REF" ComponentReference

 ComponentReference ::=
 InternalComponentReference |
 ExternalComponentReference

 InternalComponentReference ::= identifier FromModule ?

 FromModule ::= "FROM" GlobalModuleReference

 ExternalComponentReference ::= modulereference "." identifier

 The GlobalModuleReference production is defined by the ASN.1 basic
 notation [X.680]. If the GlobalModuleReference is absent from an
 InternalComponentReference, then the identifier MUST be the
 identifier of a top-level NamedType in the same module. If the
 GlobalModuleReference is present in an InternalComponentReference,
 then the identifier MUST be the identifier of a top-level NamedType
 in the referenced module.

Legg Experimental [Page 13]

RFC 4911 Encoding Instructions for RXER July 2007

 The modulereference in an ExternalComponentReference is used in the
 same way as a modulereference in an ExternalTypeReference. The
 identifier in an ExternalComponentReference MUST be the identifier of
 a top-level NamedType in the referenced module.

 The Type in the EncodingPrefixedType for a COMPONENT-REF encoding
 instruction SHALL be either:

 (1) a ReferencedType that is a DefinedType that is a typereference
 (not a DummyReference) or an ExternalTypeReference, or

 (2) a BuiltinType or ReferencedType that is one of the productions in
 Table 1 in Section 5 of the specification for RXER [RXER], or

 (3) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (4), or

 (4) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (4) and the EncodingPrefix in the
 EncodingPrefixedType does not contain a reference encoding
 instruction.

 The restrictions on the use of RXER encoding instructions are such
 that no other RXER encoding instruction is permitted within a
 NamedType if the NamedType is subject to a COMPONENT-REF encoding
 instruction.

 The Type in the top-level NamedType referenced by the COMPONENT-REF
 encoding instruction MUST be either:

 (a) if the preceding case (1) is used, a ReferencedType that is a
 DefinedType that is a typereference or ExternalTypeReference that
 references the same type as the DefinedType in case (1), or

 (b) if the preceding case (2) is used, a BuiltinType or
 ReferencedType that is the same as the BuiltinType or
 ReferencedType in case (2), or

 (c) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (a) to (c), and the EncodingPrefix in the
 EncodingPrefixedType contains an RXER encoding instruction.

 In principle, the COMPONENT-REF encoding instruction creates a
 notional NamedType where the expanded name is that of the referenced
 top-level NamedType and the Type in case (1) or (2) is substituted by
 the Type of the referenced top-level NamedType.

Legg Experimental [Page 14]

RFC 4911 Encoding Instructions for RXER July 2007

 In practice, it is sufficient for non-RXER encoders and decoders to
 use the original NamedType rather than the notional NamedType because
 the Type in case (1) or (2) can only differ from the Type of the
 referenced top-level NamedType by having fewer RXER encoding
 instructions, and RXER encoding instructions are ignored by non-RXER
 encoders and decoders.

 Although any prefixes for the Type in case (1) or (2) would be
 bypassed, it is sufficient for RXER encoders and decoders to use the
 referenced top-level NamedType instead of the notional NamedType
 because these prefixes cannot be RXER encoding instructions (except,
 of course, for the COMPONENT-REF encoding instruction) and can have
 no effect on an RXER encoding.

 Example

 Modules ::= SEQUENCE OF
 module [COMPONENT-REF module
 FROM AbstractSyntaxNotation-X
 { 1 3 6 1 4 1 21472 1 0 1 }]
 ModuleDefinition

 Note that the "module" top-level NamedType in the
 AbstractSyntaxNotation-X module is defined like so:

 COMPONENT module ModuleDefinition

 The ASN.X translation of the SEQUENCE OF type definition provides
 a more natural representation:

 <namedType xmlns:asnx="urn:ietf:params:xml:ns:asnx"
 name="Modules">
 <sequenceOf>
 <element ref="asnx:module"/>
 </sequenceOf>
 </namedType>

 Aside: The <namedType> element in ASN.X corresponds to a
 TypeAssignment, not a NamedType.

 The identifier of a NamedType subject to a COMPONENT-REF encoding
 instruction does not contribute to an RXER encoding. For the sake of
 consistency with other encoding rules, the identifier SHOULD be the
 same as the identifier in the ComponentRefInstruction.

Legg Experimental [Page 15]

RFC 4911 Encoding Instructions for RXER July 2007

11. The ELEMENT-REF Encoding Instruction

 The ELEMENT-REF encoding instruction causes an RXER encoder to encode
 a value of the component to which it is applied as an element where
 the element’s name is a qualified name of the element declaration
 referenced by the encoding instruction. In addition, the ELEMENT-REF
 encoding instruction causes values of the Markup ASN.1 type to be
 restricted to conform to the type of the element declaration.

 The notation for an ELEMENT-REF encoding instruction is defined as
 follows:

 ElementRefInstruction ::= "ELEMENT-REF" QNameValue RefParameters

 Taken together, the QNameValue and the ContextParameter in the
 RefParameters (if present) MUST reference an XML Schema element
 declaration, a RELAX NG element definition, or a top-level NamedType
 that is not subject to an ATTRIBUTE encoding instruction.

 A referenced XML Schema element declaration MUST NOT have a type that
 requires the presence of values for the XML Schema ENTITY or ENTITIES
 types.

 Aside: Entity declarations are not supported by CRXER.

 Example

 AnySchema ::= CHOICE {
 module [ELEMENT-REF {
 namespace-name
 "urn:ietf:params:xml:ns:asnx",
 local-name "module" }]
 Markup,
 schema [ELEMENT-REF {
 namespace-name
 "http://www.w3.org/2001/XMLSchema",
 local-name "schema" }]
 Markup,
 grammar [ELEMENT-REF {
 namespace-name
 "http://relaxng.org/ns/structure/1.0",
 local-name "grammar" }]
 Markup
 }

 The ASN.X translation of the choice type definition provides a
 more natural representation:

Legg Experimental [Page 16]

RFC 4911 Encoding Instructions for RXER July 2007

 <namedType xmlns:asnx="urn:ietf:params:xml:ns:asnx"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:rng="http://relaxng.org/ns/structure/1.0"
 name="AnySchema">
 <choice>
 <element ref="asnx:module" embedded="true"/>
 <element ref="xs:schema" embedded="true"/>
 <element ref="rng:grammar" embedded="true"/>
 </choice>
 </namedType>

 The identifier of a NamedType subject to an ELEMENT-REF encoding
 instruction does not contribute to the name of an element in an RXER
 encoding. For the sake of consistency, the identifier SHOULD, where
 possible, be the same as the local name of the referenced element
 declaration.

12. The LIST Encoding Instruction

 The LIST encoding instruction causes an RXER encoder to encode a
 value of a SEQUENCE OF type as a white-space-separated list of the
 component values.

 The notation for a LIST encoding instruction is defined as follows:

 ListInstruction ::= "LIST"

 The Type in an EncodingPrefixedType for a LIST encoding instruction
 SHALL be either:

 (1) a BuiltinType that is a SequenceOfType of the
 "SEQUENCE OF NamedType" form, or

 (2) a ConstrainedType that is a TypeWithConstraint of the
 "SEQUENCE Constraint OF NamedType" form or
 "SEQUENCE SizeConstraint OF NamedType" form, or

 (3) a ConstrainedType that is not a TypeWithConstraint where the Type
 in the ConstrainedType is one of (1) to (5), or

 (4) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (5), or

 (5) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (5).

Legg Experimental [Page 17]

RFC 4911 Encoding Instructions for RXER July 2007

 The effect of this condition is to force the LIST encoding
 instruction to be textually co-located with the SequenceOfType or
 TypeWithConstraint to which it applies.

 Aside: This makes it clear to a reader that the encoding
 instruction applies to every use of the type no matter how it
 might be referenced.

 The SequenceOfType in case (1) and the TypeWithConstraint in case (2)
 are said to be "subject to" the LIST encoding instruction.

 A SequenceOfType or TypeWithConstraint SHALL NOT be subject to more
 than one LIST encoding instruction.

 The base type of the component type of a SequenceOfType or
 TypeWithConstraint that is subject to a LIST encoding instruction
 MUST be one of the following:

 (1) the BOOLEAN, INTEGER, ENUMERATED, REAL, OBJECT IDENTIFIER,
 RELATIVE-OID, GeneralizedTime, or UTCTime type, or

 (2) the NCName, AnyURI, Name, or QName type from the
 AdditionalBasicDefinitions module [RXER].

 Aside: While it would be feasible to allow the component type to
 also be any character string type that is constrained such that
 all its abstract values have a length greater than zero and none
 of its abstract values contain any white space characters, testing
 whether this condition is satisfied can be quite involved. For
 the sake of simplicity, only certain immediately useful
 constrained UTF8String types, which are known to be suitable, are
 permitted (i.e., NCName, AnyURI, and Name).

 The NamedType in a SequenceOfType or TypeWithConstraint that is
 subject to a LIST encoding instruction MUST NOT be subject to an
 ATTRIBUTE, ATTRIBUTE-REF, COMPONENT-REF, GROUP, ELEMENT-REF,
 REF-AS-ELEMENT, SIMPLE-CONTENT, or TYPE-AS-VERSION encoding
 instruction.

 Example

 UpdateTimes ::= [LIST] SEQUENCE OF updateTime GeneralizedTime

Legg Experimental [Page 18]

RFC 4911 Encoding Instructions for RXER July 2007

13. The NAME Encoding Instruction

 The NAME encoding instruction causes an RXER encoder to use a
 nominated character string instead of a component’s identifier
 wherever that identifier would otherwise appear in the encoding
 (e.g., as an element or attribute name).

 The notation for a NAME encoding instruction is defined as follows:

 NameInstruction ::= "NAME" "AS"? NCNameValue

 Example

 CHOICE {
 foo-att [ATTRIBUTE] [NAME AS "Foo"] INTEGER,
 foo-elem [NAME "Foo"] INTEGER
 }

14. The REF-AS-ELEMENT Encoding Instruction

 The REF-AS-ELEMENT encoding instruction causes an RXER encoder to
 encode a value of the component to which it is applied as an element
 where the element’s name is the name of the external DTD subset
 element type declaration referenced by the encoding instruction. In
 addition, the REF-AS-ELEMENT encoding instruction causes values of
 the Markup ASN.1 type to be restricted to conform to the content and
 attributes permitted by that element type declaration and its
 associated attribute-list declarations.

 The notation for a REF-AS-ELEMENT encoding instruction is defined as
 follows:

 RefAsElementInstruction ::=
 "REF-AS-ELEMENT" NameValue Namespace ? RefParameters

 Namespace ::= "NAMESPACE" AnyURIValue

 Taken together, the NameValue and the ContextParameter in the
 RefParameters (if present) MUST reference an element type declaration
 in an external DTD subset that is conformant with Namespaces in XML
 1.0 [XMLNS10].

 The Namespace is present if and only if the Name of the referenced
 element type declaration conforms to a PrefixedName (a QName)
 [XMLNS10], in which case the Namespace specifies the namespace name
 to be associated with the Prefix of the PrefixedName.

Legg Experimental [Page 19]

RFC 4911 Encoding Instructions for RXER July 2007

 The referenced element type declaration MUST NOT require the presence
 of attributes of type ENTITY or ENTITIES.

 Aside: Entity declarations are not supported by CRXER.

 Example

 Suppose that the following external DTD subset has been defined
 with a system identifier of "http://www.example.com/inventory":

 <?xml version=’1.0’?>
 <!ELEMENT product EMPTY>
 <!ATTLIST product
 name CDATA #IMPLIED
 partNumber CDATA #REQUIRED
 quantity CDATA #REQUIRED >

 The product element type declaration can be referenced as an
 element in an ASN.1 type definition:

 CHOICE {
 product [REF-AS-ELEMENT "product"
 CONTEXT "http://www.example.com/inventory"]
 Markup
 }

 Here is the ASN.X translation of this ASN.1 type definition:

 <type>
 <choice>
 <element elementType="product"
 context="http://www.example.com/inventory"/>
 </choice>
 </type>

 The identifier of a NamedType subject to a REF-AS-ELEMENT encoding
 instruction does not contribute to the name of an element in an RXER
 encoding. For the sake of consistency, the identifier SHOULD, where
 possible, be the same as the Name of the referenced element type
 declaration (or the LocalPart if the Name conforms to a
 PrefixedName).

15. The REF-AS-TYPE Encoding Instruction

 The REF-AS-TYPE encoding instruction causes values of the Markup
 ASN.1 type to be restricted to conform to the content and attributes
 permitted by a nominated element type declaration and its associated
 attribute-list declarations in an external DTD subset.

Legg Experimental [Page 20]

RFC 4911 Encoding Instructions for RXER July 2007

 The notation for a REF-AS-TYPE encoding instruction is defined as
 follows:

 RefAsTypeInstruction ::= "REF-AS-TYPE" NameValue RefParameters

 Taken together, the NameValue and the ContextParameter of the
 RefParameters (if present) MUST reference an element type declaration
 in an external DTD subset that is conformant with Namespaces in XML
 1.0 [XMLNS10].

 The referenced element type declaration MUST NOT require the presence
 of attributes of type ENTITY or ENTITIES.

 Aside: Entity declarations are not supported by CRXER.

 Example

 The product element type declaration can be referenced as a type
 in an ASN.1 definition:

 SEQUENCE OF
 inventoryItem
 [REF-AS-TYPE "product"
 CONTEXT "http://www.example.com/inventory"]
 Markup

 Here is the ASN.X translation of this definition:

 <sequenceOf>
 <element name="inventoryItem">
 <type elementType="product"
 context="http://www.example.com/inventory"/>
 </element>
 </sequenceOf>

 Note that when an element type declaration is referenced as a
 type, the Name of the element type declaration does not contribute
 to RXER encodings. For example, child elements in the RXER
 encoding of values of the above SEQUENCE OF type would resemble
 the following:

 <inventoryItem name="hammer" partNumber="1543" quantity="29"/>

Legg Experimental [Page 21]

RFC 4911 Encoding Instructions for RXER July 2007

16. The SCHEMA-IDENTITY Encoding Instruction

 The SCHEMA-IDENTITY encoding instruction associates a unique
 identifier, a URI [URI], with the ASN.1 module containing the
 encoding instruction. This encoding instruction has no effect on an
 RXER encoder but does have an effect on the translation of an ASN.1
 specification into an ASN.X representation.

 The notation for a SCHEMA-IDENTITY encoding instruction is defined as
 follows:

 SchemaIdentityInstruction ::= "SCHEMA-IDENTITY" AnyURIValue

 The character string specified by the AnyURIValue of each
 SCHEMA-IDENTITY encoding instruction MUST be distinct. In
 particular, successive versions of an ASN.1 module must each have a
 different schema identity URI value.

17. The SIMPLE-CONTENT Encoding Instruction

 The SIMPLE-CONTENT encoding instruction causes an RXER encoder to
 encode a value of a component of a SEQUENCE or SET type without
 encapsulation in a child element.

 The notation for a SIMPLE-CONTENT encoding instruction is defined as
 follows:

 SimpleContentInstruction ::= "SIMPLE-CONTENT"

 A NamedType subject to a SIMPLE-CONTENT encoding instruction SHALL be
 in a ComponentType in a ComponentTypeList in a RootComponentTypeList.
 At most one such NamedType of a SEQUENCE or SET type is permitted to
 be subject to a SIMPLE-CONTENT encoding instruction. If any
 component is subject to a SIMPLE-CONTENT encoding instruction, then
 all other components in the same SEQUENCE or SET type definition MUST
 be attribute components. These tests are applied after the
 COMPONENTS OF transformation specified in X.680, Clause 24.4 [X.680].

 Aside: Child elements and simple content are mutually exclusive.
 Specification writers should note that use of the SIMPLE-CONTENT
 encoding instruction on a component of an extensible SEQUENCE or
 SET type means that all future extensions to the SEQUENCE or SET
 type are restricted to being attribute components with the limited
 set of types that are permitted for attribute components. Using
 an ATTRIBUTE encoding instruction instead of a SIMPLE-CONTENT
 encoding instruction avoids this limitation.

Legg Experimental [Page 22]

RFC 4911 Encoding Instructions for RXER July 2007

 The base type of the type of a NamedType that is subject to a
 SIMPLE-CONTENT encoding instruction SHALL NOT be:

 (1) a SET or SET OF type, or

 (2) a CHOICE type where the ChoiceType is not subject to a UNION
 encoding instruction, or

 (3) a SEQUENCE type other than the one defining the QName type from
 the AdditionalBasicDefinitions module [RXER] (i.e., QName is
 allowed), or

 (4) a SEQUENCE OF type where the SequenceOfType is not subject to a
 LIST encoding instruction, or

 (5) an open type.

 If the type of a NamedType subject to a SIMPLE-CONTENT encoding
 instruction has abstract values with an empty character data
 translation [RXER] (i.e., an empty encoding), then the NamedType
 SHALL NOT be marked OPTIONAL or DEFAULT.

 Example

 SEQUENCE {
 units [ATTRIBUTE] UTF8String,
 amount [SIMPLE-CONTENT] INTEGER
 }

18. The TARGET-NAMESPACE Encoding Instruction

 The TARGET-NAMESPACE encoding instruction associates an XML namespace
 name [XMLNS10], a URI [URI], with the type, object class, value,
 object, and object set references defined in the ASN.1 module
 containing the encoding instruction. In addition, it associates the
 namespace name with each top-level NamedType in the RXER encoding
 control section.

 The notation for a TARGET-NAMESPACE encoding instruction is defined
 as follows:

 TargetNamespaceInstruction ::=
 "TARGET-NAMESPACE" AnyURIValue Prefix ?

 Prefix ::= "PREFIX" NCNameValue

 The AnyURIValue SHALL NOT specify an empty string.

Legg Experimental [Page 23]

RFC 4911 Encoding Instructions for RXER July 2007

 Definition (target namespace): If an ASN.1 module contains a
 TARGET-NAMESPACE encoding instruction, then the target namespace of
 the module is the character string specified by the AnyURIValue of
 the TARGET-NAMESPACE encoding instruction; otherwise, the target
 namespace of the module is said to be absent.

 Two or more ASN.1 modules MAY have the same non-absent target
 namespace if and only if the expanded names of the top-level
 attribute components are distinct across all those modules, the
 expanded names of the top-level element components are distinct
 across all those modules, and the defined type, object class, value,
 object, and object set references are distinct in their category
 across all those modules.

 The Prefix, if present, suggests an NCName to use as the namespace
 prefix in namespace declarations involving the target namespace. An
 RXER encoder is not obligated to use the nominated namespace prefix.

 If there are no top-level components, then the RXER encodings
 produced using a module with a TARGET-NAMESPACE encoding instruction
 are backward compatible with the RXER encodings produced by the same
 module without the TARGET-NAMESPACE encoding instruction.

19. The TYPE-AS-VERSION Encoding Instruction

 The TYPE-AS-VERSION encoding instruction causes an RXER encoder to
 include an xsi:type attribute in the encoding of a value of the
 component to which the encoding instruction is applied. This
 attribute allows an XML Schema [XSD1] validator to select, if
 available, the appropriate XML Schema translation for the version of
 the ASN.1 specification used to create the encoding.

 Aside: Translations of an ASN.1 specification into a compatible
 XML Schema are expected to be slightly different across versions
 because of progressive extensions to the ASN.1 specification. Any
 incompatibilities between these translations can be accommodated
 if each version uses a different target namespace. The target
 namespace will be evident in the value of the xsi:type attribute
 and will cause an XML Schema validator to use the appropriate
 version. This mechanism also accommodates an ASN.1 type that is
 renamed in a later version of the ASN.1 specification.

 The notation for a TYPE-AS-VERSION encoding instruction is defined as
 follows:

 TypeAsVersionInstruction ::= "TYPE-AS-VERSION"

Legg Experimental [Page 24]

RFC 4911 Encoding Instructions for RXER July 2007

 The Type in a NamedType that is subject to a TYPE-AS-VERSION encoding
 instruction MUST be a namespace-qualified reference [RXER].

 The addition of a TYPE-AS-VERSION encoding instruction does not
 affect the backward compatibility of RXER encodings.

 Aside: In a translation of an ASN.1 specification into XML Schema,
 any Type in a NamedType that is subject to a TYPE-AS-VERSION
 encoding instruction is expected to be translated into the
 XML Schema anyType so that the xsi:type attribute acts as a switch
 to select the appropriate version.

20. The TYPE-REF Encoding Instruction

 The TYPE-REF encoding instruction causes values of the Markup ASN.1
 type to be restricted to conform to a specific XML Schema named type,
 RELAX NG named pattern or an ASN.1 defined type.

 Aside: Referencing an ASN.1 type in a TYPE-REF encoding
 instruction does not have the effect of imposing a requirement to
 preserve the Infoset [INFOSET] representation of the RXER encoding
 of an abstract value of the type. It is still sufficient to
 preserve just the abstract value.

 The notation for a TYPE-REF encoding instruction is defined as
 follows:

 TypeRefInstruction ::= "TYPE-REF" QNameValue RefParameters

 Taken together, the QNameValue and the ContextParameter of the
 RefParameters (if present) MUST reference an XML Schema named type, a
 RELAX NG named pattern, or an ASN.1 defined type.

 A referenced XML Schema type MUST NOT require the presence of values
 for the XML Schema ENTITY or ENTITIES types.

 Aside: Entity declarations are not supported by CRXER.

 The QNameValue SHALL NOT be a direct reference to the XML Schema
 NOTATION type [XSD2] (i.e., the namespace name
 "http://www.w3.org/2001/XMLSchema" and local name "NOTATION");
 however, a reference to an XML Schema type derived from the NOTATION
 type is permitted.

 Aside: This restriction is to ensure that the lexical space [XSD2]
 of the referenced type is actually populated with the names of
 notations [XSD1].

Legg Experimental [Page 25]

RFC 4911 Encoding Instructions for RXER July 2007

 Example

 MyDecimal ::=
 [TYPE-REF {
 namespace-name "http://www.w3.org/2001/XMLSchema",
 local-name "decimal" }]
 Markup

 Note that the ASN.X translation of this ASN.1 type definition
 provides a more natural way to reference the XML Schema decimal
 type:

 <namedType xmlns:xs="http://www.w3.org/2001/XMLSchema"
 name="MyDecimal">
 <type ref="xs:decimal" embedded="true"/>
 </namedType>

21. The UNION Encoding Instruction

 The UNION encoding instruction causes an RXER encoder to encode the
 value of an alternative of a CHOICE type without encapsulation in a
 child element. The chosen alternative is optionally indicated with a
 member attribute. The optional PrecedenceList also allows a
 specification writer to alter the order in which an RXER decoder will
 consider the alternatives of the CHOICE as it determines which
 alternative has been used (if the actual alternative has not been
 specified through the member attribute).

 The notation for a UNION encoding instruction is defined as follows:

 UnionInstruction ::= "UNION" AlternativesPrecedence ?

 AlternativesPrecedence ::= "PRECEDENCE" PrecedenceList

 PrecedenceList ::= identifier PrecedenceList ?

 The Type in the EncodingPrefixedType for a UNION encoding instruction
 SHALL be either:

 (1) a BuiltinType that is a ChoiceType, or

 (2) a ConstrainedType that is not a TypeWithConstraint where the Type
 in the ConstrainedType is one of (1) to (4), or

 (3) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (4), or

Legg Experimental [Page 26]

RFC 4911 Encoding Instructions for RXER July 2007

 (4) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (4).

 The ChoiceType in case (1) is said to be "subject to" the UNION
 encoding instruction.

 The base type of the type of each alternative of a ChoiceType that is
 subject to a UNION encoding instruction SHALL NOT be:

 (1) a CHOICE, SET, or SET OF type, or

 (2) a SEQUENCE type other than the one defining the QName type from
 the AdditionalBasicDefinitions module [RXER] (i.e., QName is
 allowed), or

 (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
 LIST encoding instruction, or

 (4) an open type.

 Each identifier in the PrecedenceList MUST be the identifier of a
 NamedType in the ChoiceType.

 A particular identifier SHALL NOT appear more than once in the same
 PrecedenceList.

 Every NamedType in a ChoiceType that is subject to a UNION encoding
 instruction MUST NOT be subject to an ATTRIBUTE, ATTRIBUTE-REF,
 COMPONENT-REF, GROUP, ELEMENT-REF, REF-AS-ELEMENT, SIMPLE-CONTENT, or
 TYPE-AS-VERSION encoding instruction.

 Example

 [UNION PRECEDENCE basicName] CHOICE {
 extendedName UTF8String,
 basicName PrintableString
 }

22. The VALUES Encoding Instruction

 The VALUES encoding instruction causes an RXER encoder to use
 nominated names instead of the identifiers that would otherwise
 appear in the encoding of a value of a BIT STRING, ENUMERATED, or
 INTEGER type.

Legg Experimental [Page 27]

RFC 4911 Encoding Instructions for RXER July 2007

 The notation for a VALUES encoding instruction is defined as follows:

 ValuesInstruction ::=
 "VALUES" AllValuesMapped ? ValueMappingList ?

 AllValuesMapped ::= AllCapitalized | AllUppercased

 AllCapitalized ::= "ALL" "CAPITALIZED"

 AllUppercased ::= "ALL" "UPPERCASED"

 ValueMappingList ::= ValueMapping ValueMappingList ?

 ValueMapping ::= "," identifier "AS" NCNameValue

 The Type in the EncodingPrefixedType for a VALUES encoding
 instruction SHALL be either:

 (1) a BuiltinType that is a BitStringType with a NamedBitList, or

 (2) a BuiltinType that is an EnumeratedType, or

 (3) a BuiltinType that is an IntegerType with a NamedNumberList, or

 (4) a ConstrainedType that is not a TypeWithConstraint where the Type
 in the ConstrainedType is one of (1) to (6), or

 (5) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (6), or

 (6) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (6).

 The effect of this condition is to force the VALUES encoding
 instruction to be textually co-located with the type definition to
 which it applies.

 The BitStringType, EnumeratedType, or IntegerType in case (1), (2),
 or (3), respectively, is said to be "subject to" the VALUES encoding
 instruction.

 A BitStringType, EnumeratedType, or IntegerType SHALL NOT be subject
 to more than one VALUES encoding instruction.

 Each identifier in a ValueMapping MUST be an identifier appearing in
 the NamedBitList, Enumerations, or NamedNumberList, as the case may
 be.

Legg Experimental [Page 28]

RFC 4911 Encoding Instructions for RXER July 2007

 The identifier in a ValueMapping SHALL NOT be the same as the
 identifier in any other ValueMapping for the same ValueMappingList.

 Definition (replacement name): Each identifier in a BitStringType,
 EnumeratedType, or IntegerType subject to a VALUES encoding
 instruction has a replacement name. If there is a ValueMapping for
 the identifier, then the replacement name is the character string
 specified by the NCNameValue in the ValueMapping; else if
 AllCapitalized is used, then the replacement name is the identifier
 with the first character uppercased; else if AllUppercased is used,
 then the replacement name is the identifier with all its characters
 uppercased; otherwise, the replacement name is the identifier.

 The replacement names for the identifiers in a BitStringType subject
 to a VALUES encoding instruction MUST be distinct.

 The replacement names for the identifiers in an EnumeratedType
 subject to a VALUES encoding instruction MUST be distinct.

 The replacement names for the identifiers in an IntegerType subject
 to a VALUES encoding instruction MUST be distinct.

 Example

 Traffic-Light ::= [VALUES ALL CAPITALIZED, red AS "RED"]
 ENUMERATED {
 red, -- Replacement name is RED.
 amber, -- Replacement name is Amber.
 green -- Replacement name is Green.
 }

23. Insertion Encoding Instructions

 Certain of the RXER encoding instructions are categorized as
 insertion encoding instructions. The insertion encoding instructions
 are the NO-INSERTIONS, HOLLOW-INSERTIONS, SINGULAR-INSERTIONS,
 UNIFORM-INSERTIONS, and MULTIFORM-INSERTIONS encoding instructions
 (whose notations are described respectively by
 NoInsertionsInstruction, HollowInsertionsInstruction,
 SingularInsertionsInstruction, UniformInsertionsInstruction, and
 MultiformInsertionsInstruction).

 The notation for the insertion encoding instructions is defined as
 follows:

Legg Experimental [Page 29]

RFC 4911 Encoding Instructions for RXER July 2007

 InsertionsInstruction ::=
 NoInsertionsInstruction |
 HollowInsertionsInstruction |
 SingularInsertionsInstruction |
 UniformInsertionsInstruction |
 MultiformInsertionsInstruction

 NoInsertionsInstruction ::= "NO-INSERTIONS"

 HollowInsertionsInstruction ::= "HOLLOW-INSERTIONS"

 SingularInsertionsInstruction ::= "SINGULAR-INSERTIONS"

 UniformInsertionsInstruction ::= "UNIFORM-INSERTIONS"

 MultiformInsertionsInstruction ::= "MULTIFORM-INSERTIONS"

 Using the GROUP encoding instruction on components with extensible
 types can lead to situations where an unknown extension could be
 associated with more than one extension insertion point. The
 insertion encoding instructions remove this ambiguity by limiting the
 form that extensions can take. That is, the insertion encoding
 instructions indicate what extensions can be made to an ASN.1
 specification without breaking forward compatibility for RXER
 encodings.

 Aside: Forward compatibility means the ability for a decoder to
 successfully decode an encoding containing extensions introduced
 into a version of the specification that is more recent than the
 one used by the decoder.

 In the most general case, an extension to a CHOICE, SET, or SEQUENCE
 type will generate zero or more attributes and zero or more elements,
 due to the potential use of the GROUP and ATTRIBUTE encoding
 instructions by the extension.

 The MULTIFORM-INSERTIONS encoding instruction indicates that the RXER
 encodings produced by forward-compatible extensions to a type will
 always consist of one or more elements and zero or more attributes.
 No restriction is placed on the names of the elements.

 Aside: Of necessity, the names of the attributes will all be
 different in any given encoding.

 The UNIFORM-INSERTIONS encoding instruction indicates that the RXER
 encodings produced by forward-compatible extensions to a type will
 always consist of one or more elements having the same expanded name,
 and zero or more attributes. The expanded name shared by the

Legg Experimental [Page 30]

RFC 4911 Encoding Instructions for RXER July 2007

 elements in one particular encoding is not required to be the same as
 the expanded name shared by the elements in any other encoding of the
 extension. For example, in one encoding of the extension the
 elements might all be called "foo", while in another encoding of the
 extension they might all be called "bar".

 The SINGULAR-INSERTIONS encoding instruction indicates that the RXER
 encodings produced by forward-compatible extensions to a type will
 always consist of a single element and zero or more attributes. The
 name of the single element is not required to be the same in every
 possible encoding of the extension.

 The HOLLOW-INSERTIONS encoding instruction indicates that the RXER
 encodings produced by forward-compatible extensions to a type will
 always consist of zero elements and zero or more attributes.

 The NO-INSERTIONS encoding instruction indicates that no forward-
 compatible extensions can be made to a type.

 Examples of forward-compatible extensions are provided in Appendix C.

 The Type in the EncodingPrefixedType for an insertion encoding
 instruction SHALL be either:

 (1) a BuiltinType that is a ChoiceType where the ChoiceType is not
 subject to a UNION encoding instruction, or

 (2) a BuiltinType that is a SequenceType or SetType, or

 (3) a ConstrainedType that is not a TypeWithConstraint where the Type
 in the ConstrainedType is one of (1) to (5), or

 (4) a BuiltinType that is a PrefixedType that is a TaggedType where
 the Type in the TaggedType is one of (1) to (5), or

 (5) a BuiltinType that is a PrefixedType that is an
 EncodingPrefixedType where the Type in the EncodingPrefixedType
 is one of (1) to (5).

 Case (2) is not permitted when the insertion encoding instruction is
 the SINGULAR-INSERTIONS, UNIFORM-INSERTIONS, or MULTIFORM-INSERTIONS
 encoding instruction.

Legg Experimental [Page 31]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: Because extensions to a SET or SEQUENCE type are serial and
 effectively optional, the SINGULAR-INSERTIONS, UNIFORM-INSERTIONS,
 and MULTIFORM-INSERTIONS encoding instructions offer no advantage
 over unrestricted extensions (for a SET or SEQUENCE). For
 example, an optional series of singular insertions generates zero
 or more elements and zero or more attributes, just like an
 unrestricted extension.

 The Type in case (1) or case (2) is said to be "subject to" the
 insertion encoding instruction.

 The Type in case (1) or case (2) MUST be extensible, either
 explicitly or by default.

 A Type SHALL NOT be subject to more than one insertion encoding
 instruction.

 The insertion encoding instructions indicate what kinds of extensions
 can be made to a type without breaking forward compatibility, but
 they do not prohibit extensions that do break forward compatibility.
 That is, it is not an error for a type’s base type to contain
 extensions that do not satisfy an insertion encoding instruction
 affecting the type. However, if any such extensions are made, then a
 new value SHOULD be introduced into the extensible set of permitted
 values for a version indicator attribute, or attributes (see
 Section 24), whose scope encompasses the extensions. An example is
 provided in Appendix C.

24. The VERSION-INDICATOR Encoding Instruction

 The VERSION-INDICATOR encoding instruction provides a mechanism for
 RXER decoders to be alerted that an encoding contains extensions that
 break forward compatibility (see the preceding section).

 The notation for a VERSION-INDICATOR encoding instruction is defined
 as follows:

 VersionIndicatorInstruction ::= "VERSION-INDICATOR"

 A NamedType that is subject to a VERSION-INDICATOR encoding
 instruction MUST also be subject to an ATTRIBUTE encoding
 instruction.

 The type of the NamedType that is subject to the VERSION-INDICATOR
 encoding instruction MUST be directly or indirectly a constrained
 type where the set of permitted values is defined to be extensible.
 Each value represents a different version of the ASN.1 specification.
 Ordinarily, an application will set the value of a version indicator

Legg Experimental [Page 32]

RFC 4911 Encoding Instructions for RXER July 2007

 attribute to be the last of these permitted values. An application
 MAY set the value of the version indicator attribute to the value
 corresponding to an earlier version of the specification if it has
 not used any of the extensions added in a subsequent version.

 If an RXER decoder encounters a value of the type that is not one of
 the root values or extension additions (but that is still allowed
 since the set of permitted values is extensible), then this indicates
 that the decoder is using a version of the ASN.1 specification that
 is not compatible with the version used to produce the encoding. In
 such cases, the decoder SHOULD treat the element containing the
 attribute as having an unknown ASN.1 type.

 Aside: A version indicator attribute only indicates an
 incompatibility with respect to RXER encodings. Other encodings
 are not affected because the GROUP encoding instruction does not
 apply to them.

 Examples

 In this first example, the decoder is using an incompatible older
 version if the value of the version attribute in a received RXER
 encoding is not 1, 2, or 3.

 SEQUENCE {
 version [ATTRIBUTE] [VERSION-INDICATOR]
 INTEGER (1, ..., 2..3),
 message MessageType
 }

 In this second example, the decoder is using an incompatible older
 version if the value of the format attribute in a received RXER
 encoding is not "1.0", "1.1", or "2.0".

 SEQUENCE {
 format [ATTRIBUTE] [VERSION-INDICATOR]
 UTF8String ("1.0", ..., "1.1" | "2.0"),
 message MessageType
 }

 An extensive example is provided in Appendix C.

 It is not necessary for every extensible type to have its own version
 indicator attribute. It would be typical for only the types of
 top-level element components to include a version indicator
 attribute, which would serve as the version indicator for all of the
 nested components.

Legg Experimental [Page 33]

RFC 4911 Encoding Instructions for RXER July 2007

25. The GROUP Encoding Instruction

 The GROUP encoding instruction causes an RXER encoder to encode a
 value of the component to which it is applied without encapsulation
 as an element. It allows the construction of non-trivial content
 models for element content.

 The notation for a GROUP encoding instruction is defined as follows:

 GroupInstruction ::= "GROUP"

 The base type of the type of a NamedType that is subject to a GROUP
 encoding instruction SHALL be either:

 (1) a SEQUENCE, SET, or SET OF type, or

 (2) a CHOICE type where the ChoiceType is not subject to a UNION
 encoding instruction, or

 (3) a SEQUENCE OF type where the SequenceOfType is not subject to a
 LIST encoding instruction.

 The SEQUENCE type in case (1) SHALL NOT be the associated type for a
 built-in type, SHALL NOT be a type from the
 AdditionalBasicDefinitions module [RXER], and SHALL NOT contain a
 component that is subject to a SIMPLE-CONTENT encoding instruction.

 Aside: Thus, the CHARACTER STRING, EMBEDDED PDV, EXTERNAL, REAL,
 and QName types are excluded.

 The CHOICE type in case (2) SHALL NOT be a type from the
 AdditionalBasicDefinitions module.

 Aside: Thus, the Markup type is excluded.

 Definition (visible component): Ignoring all type constraints, the
 visible components for a type that is directly or indirectly a
 combining ASN.1 type (i.e., SEQUENCE, SET, CHOICE, SEQUENCE OF, or
 SET OF) is the set of components of the combining type definition
 plus, for each NamedType (of the combining type definition) that is
 subject to a GROUP encoding instruction, the visible components for
 the type of the NamedType. The visible components are determined
 after the COMPONENTS OF transformation specified in X.680, Clause
 24.4 [X.680].

Legg Experimental [Page 34]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: The set of visible attribute and element components for a
 type is the set of all the components of the type, and any nested
 types, that describe attributes and child elements appearing in
 the RXER encodings of values of the outer type.

 A GROUP encoding instruction MUST NOT be used where it would cause a
 NamedType to be a visible component of the type of that same
 NamedType (which is only possible if the type definition is
 recursive).

 Aside: Components subject to a GROUP encoding instruction might be
 translated into a compatible XML Schema [XSD1] as group
 definitions. A NamedType that is visible to its own type is
 analogous to a circular group, which XML Schema disallows.

 Section 25.1 imposes additional conditions on the use of the GROUP
 encoding instruction.

 In any use of the GROUP encoding instruction, there is a type, the
 including type, that contains the component subject to the GROUP
 encoding instruction, and a type, the included type, that is the base
 type of that component. Either type can have an extensible content
 model, either by directly using ASN.1 extensibility or by including
 through another GROUP encoding instruction some other type that is
 extensible.

 The including and included types may be defined in different ASN.1
 modules, in which case the owner of the including type, i.e., the
 person or organization having the authority to add extensions to the
 including type’s definition, may be different from the owner of the
 included type.

 If the owner of the including type is not using the most recent
 version of the included type’s definition, then the owner of the
 including type might add an extension to the including type that is
 valid with respect to the older version of the included type, but is
 later found to be invalid when the latest versions of the including
 and included type definitions are brought together (perhaps by a
 third party). Although the owner of the including type must
 necessarily be aware of the existence of the included type, the
 reverse is not necessarily true. The owner of the included type
 could add an extension to the included type without realizing that it
 invalidates someone else’s including type.

Legg Experimental [Page 35]

RFC 4911 Encoding Instructions for RXER July 2007

 To avoid these problems, a GROUP encoding instruction MUST NOT be
 used if:

 (1) the included type is defined in a different module from the
 including type, and

 (2) the included type has an extensible content model, and

 (3) changes to the included type are not coordinated with the owner
 of the including type.

 Changes in the included type are coordinated with the owner of the
 including type if:

 (1) the owner of the included type is also the owner of the including
 type, or

 (2) the owner of the including type is collaborating with the owner
 of the included type, or

 (3) all changes will be vetted by a common third party before being
 approved and published.

25.1. Unambiguous Encodings

 Unregulated use of the GROUP encoding instruction can easily lead to
 specifications in which distinct abstract values have
 indistinguishable RXER encodings, i.e., ambiguous encodings. This
 section imposes restrictions on the use of the GROUP encoding
 instruction to ensure that distinct abstract values have distinct
 RXER encodings. In addition, these restrictions ensure that an
 abstract value can be easily decoded in a single pass without
 back-tracking.

 An RXER decoder for an ASN.1 type can be abstracted as a recognizer
 for a notional language, consisting of element and attribute expanded
 names, where the type definition describes the grammar for that
 language (in fact it is a context-free grammar). The restrictions on
 a type definition to ensure easy, unambiguous decoding are more
 conveniently, completely, and simply expressed as conditions on this
 associated grammar. Implementations are not expected to verify type
 definitions exactly in the manner to be described; however, the
 procedure used MUST produce the same result.

 Section 25.1.1 describes the procedure for recasting as a grammar a
 type definition containing components subject to the GROUP encoding
 instruction. Sections 25.1.2 and 25.1.3 specify conditions that the

Legg Experimental [Page 36]

RFC 4911 Encoding Instructions for RXER July 2007

 grammar must satisfy for the type definition to be valid. Section
 25.1.4 describes how unrecognized attributes are accepted by the
 grammar for an extensible type.

 Appendices A and B have extensive examples.

25.1.1. Grammar Construction

 A grammar consists of a collection of productions. A production has
 a left-hand side and a right-hand side (in this document, separated
 by the "::=" symbol). The left-hand side (in a context-free grammar)
 is a single non-terminal symbol. The right-hand side is a sequence
 of non-terminal and terminal symbols. The terminal symbols are the
 lexical items of the language that the grammar describes. One of the
 non-terminals is nominated to be the start symbol. A valid sequence
 of terminals for the language can be generated from the grammar by
 beginning with the start symbol and repeatedly replacing any
 non-terminal with the right-hand side of one of the productions where
 that non-terminal is on the production’s left-hand side. The final
 sequence of terminals is achieved when there are no remaining
 non-terminals to replace.

 Aside: X.680 describes the ASN.1 basic notation using a
 context-free grammar.

 Each NamedType has an associated primary and secondary non-terminal.

 Aside: The secondary non-terminal for a NamedType is used when the
 base type of the type in the NamedType is a SEQUENCE OF type or
 SET OF type.

 Each ExtensionAddition and ExtensionAdditionAlternative has an
 associated non-terminal. There is a non-terminal associated with the
 extension insertion point of each extensible type. There is also a
 primary start non-terminal (this is the start symbol) and a secondary
 start non-terminal. The exact nature of the non-terminals is not
 important, however all the non-terminals MUST be mutually distinct.

 It is adequate for most of the examples in this document (though not
 in the most general case) for the primary non-terminal for a
 NamedType to be the identifier of the NamedType, for the primary
 start non-terminal to be S, for the non-terminals for the instances
 of ExtensionAddition and ExtensionAdditionAlternative to be E1, E2,
 E3, and so on, and for the non-terminals for the extension insertion
 points to be I1, I2, I3, and so on. The secondary non-terminals are
 labelled by appending a "’" character to the primary non-terminal
 label, e.g., the primary and secondary start non-terminals are S and
 S’, respectively.

Legg Experimental [Page 37]

RFC 4911 Encoding Instructions for RXER July 2007

 Each NamedType and extension insertion point has an associated
 terminal. There exists a terminal called the general extension
 terminal that is not associated with any specific notation. The
 general extension terminal and the terminals for the extension
 insertion points are used to represent elements in unknown
 extensions. The exact nature of the terminals is not important;
 however, the aforementioned terminals MUST be mutually distinct. The
 terminals are further categorized as either element terminals or
 attribute terminals. A terminal for a NamedType is an attribute
 terminal if its associated NamedType is an attribute component;
 otherwise, it is an element terminal. The general extension terminal
 and the terminals for the extension insertion points are categorized
 as element terminals.

 Terminals for attributes in unknown extensions are not explicitly
 provided in the grammar. Certain productions in the grammar are
 categorized as insertion point productions, and their role in
 accepting unknown attributes is described in Section 25.1.4.

 In the examples in this document, the terminal for a component other
 than an attribute component will be represented as the local name of
 the expanded name of the component enclosed in double quotes, and the
 terminal for an attribute component will be represented as the local
 name of the expanded name of the component prefixed by the ’@’
 character and enclosed in double quotes. The general extension
 terminal will be represented as "*" and the terminals for the
 extension insertion points will be represented as "*1", "*2", "*3",
 and so on.

 The productions generated from a NamedType depend on the base type of
 the type of the NamedType. The productions for the start
 non-terminals depend on the combining type definition being tested.
 In either case, the procedure for generating productions takes a
 primary non-terminal, a secondary non-terminal (sometimes), and a
 type definition.

 The grammar is constructed beginning with the start non-terminals and
 the combining type definition being tested.

 A grammar is constructed after the COMPONENTS OF transformation
 specified in X.680, Clause 24.4 [X.680].

 Given a primary non-terminal, N, and a type where the base type is a
 SEQUENCE or SET type, a production is added to the grammar with N as
 the left-hand side. The right-hand side is constructed from an
 initial empty state according to the following cases considered in
 order:

Legg Experimental [Page 38]

RFC 4911 Encoding Instructions for RXER July 2007

 (1) If an initial RootComponentTypeList is present in the base type,
 then the sequence of primary non-terminals for the components
 nested in that RootComponentTypeList are appended to the right-
 hand side in the order of their definition.

 (2) If an ExtensionAdditions instance is present in the base type and
 not empty, then the non-terminal for the first ExtensionAddition
 nested in the ExtensionAdditions instance is appended to the
 right-hand side.

 (3) If an ExtensionAdditions instance is empty or not present in the
 base type, and the base type is extensible (explicitly or by
 default), and the base type is not subject to a NO-INSERTIONS or
 HOLLOW-INSERTIONS encoding instruction, then the non-terminal for
 the extension insertion point of the base type is appended to the
 right-hand side.

 (4) If a final RootComponentTypeList is present in the base type,
 then the primary non-terminals for the components nested in that
 RootComponentTypeList are appended to the right-hand side in the
 order of their definition.

 The production is an insertion point production if an
 ExtensionAdditions instance is empty or not present in the base type,
 and the base type is extensible (explicitly or by default), and the
 base type is not subject to a NO-INSERTIONS encoding instruction.

 If a component in a ComponentTypeList (in either a
 RootComponentTypeList or an ExtensionAdditionGroup) is marked
 OPTIONAL or DEFAULT, then a production with the primary non-terminal
 of the component as the left-hand side and an empty right-hand side
 is added to the grammar.

 If a component (regardless of the ASN.1 combining type containing it)
 is subject to a GROUP encoding instruction, then one or more
 productions constructed according to the component’s type are added
 to the grammar. Each of these productions has the primary
 non-terminal of the component as the left-hand side.

 If a component (regardless of the ASN.1 combining type containing it)
 is not subject to a GROUP encoding instruction, then a production is
 added to the grammar with the primary non-terminal of the component
 as the left-hand side and the terminal of the component as the
 right-hand side.

Legg Experimental [Page 39]

RFC 4911 Encoding Instructions for RXER July 2007

 Example

 Consider the following ASN.1 type definition:

 SEQUENCE {
 -- Start of initial RootComponentTypeList.
 one [ATTRIBUTE] UTF8String,
 two BOOLEAN OPTIONAL,
 three INTEGER
 -- End of initial RootComponentTypeList.
 }

 Here is the grammar derived from this type:

 S ::= one two three
 one ::= "@one"
 two ::= "two"
 two ::=
 three ::= "three"

 For each ExtensionAddition (of a SEQUENCE or SET base type), a
 production is added to the grammar where the left-hand side is the
 non-terminal for the ExtensionAddition and the right-hand side is
 initially empty. If the ExtensionAddition is a ComponentType, then
 the primary non-terminal for the NamedType in the ComponentType is
 appended to the right-hand side; otherwise (an
 ExtensionAdditionGroup), the sequence of primary non-terminals for
 the components nested in the ComponentTypeList in the
 ExtensionAdditionGroup are appended to the right-hand side in the
 order of their definition. If the ExtensionAddition is followed by
 another ExtensionAddition, then the non-terminal for the next
 ExtensionAddition is appended to the right-hand side; otherwise, if
 the base type is not subject to a NO-INSERTIONS or HOLLOW-INSERTIONS
 encoding instruction, then the non-terminal for the extension
 insertion point of the base type is appended to the right-hand side.
 If the ExtensionAddition is not followed by another ExtensionAddition
 and the base type is not subject to a NO-INSERTIONS encoding
 instruction, then the production is an insertion point production.
 If the empty sequence of terminals cannot be generated from the
 production (it may be necessary to wait until the grammar is
 otherwise complete before making this determination), then another
 production is added to the grammar where the left-hand side is the
 non-terminal for the ExtensionAddition and the right-hand side is
 empty.

 Aside: An extension is always effectively optional since a sender
 may be using an earlier version of the ASN.1 specification where
 none, or only some, of the extensions have been defined.

Legg Experimental [Page 40]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: The grammar generated for ExtensionAdditions is structured
 to take account of the condition that an extension can only be
 used if all the earlier extensions are also used [X.680].

 If a SEQUENCE or SET base type is extensible (explicitly or by
 default) and is not subject to a NO-INSERTIONS or HOLLOW-INSERTIONS
 encoding instruction, then:

 (1) a production is added to the grammar where the left-hand side is
 the non-terminal for the extension insertion point of the base
 type and the right-hand side is the general extension terminal
 followed by the non-terminal for the extension insertion point,
 and

 (2) a production is added to the grammar where the left-hand side is
 the non-terminal for the extension insertion point and the
 right-hand side is empty.

 Example

 Consider the following ASN.1 type definition:

 SEQUENCE {
 -- Start of initial RootComponentTypeList.
 one BOOLEAN,
 two INTEGER OPTIONAL,
 -- End of initial RootComponentTypeList.
 ...,
 -- Start of ExtensionAdditions.
 four INTEGER, -- First ExtensionAddition (E1).
 five BOOLEAN OPTIONAL, -- Second ExtensionAddition (E2).
 [[-- An ExtensionAdditionGroup.
 six UTF8String,
 seven INTEGER OPTIONAL
]], -- Third ExtensionAddition (E3).
 -- End of ExtensionAdditions.
 -- The extension insertion point is here (I1).
 ...,
 -- Start of final RootComponentTypeList.
 three INTEGER
 }

 Here is the grammar derived from this type:

 S ::= one two E1 three

 E1 ::= four E2
 E1 ::=

Legg Experimental [Page 41]

RFC 4911 Encoding Instructions for RXER July 2007

 E2 ::= five E3
 E3 ::= six seven I1
 E3 ::=

 I1 ::= "*" I1
 I1 ::=

 one ::= "one"
 two ::= "two"
 two ::=
 three ::= "three"
 four ::= "four"
 five ::= "five"
 five ::=
 six ::= "six"
 seven ::= "seven"
 seven ::=

 If the SEQUENCE type were subject to a NO-INSERTIONS or
 HOLLOW-INSERTIONS encoding instruction, then the productions for
 I1 would not appear, and the first production for E3 would be:

 E3 ::= six seven

 Given a primary non-terminal, N, and a type where the base type is a
 CHOICE type:

 (1) A production is added to the grammar for each NamedType nested in
 the RootAlternativeTypeList of the base type, where the left-hand
 side is N and the right-hand side is the primary non-terminal for
 the NamedType.

 (2) A production is added to the grammar for each
 ExtensionAdditionAlternative of the base type, where the left-
 hand side is N and the right-hand side is the non-terminal for
 the ExtensionAdditionAlternative.

 (3) If the base type is extensible (explicitly or by default) and the
 base type is not subject to an insertion encoding instruction,
 then:

 (a) A production is added to the grammar where the left-hand side
 is N and the right-hand side is the non-terminal for the
 extension insertion point of the base type. This production
 is an insertion point production.

Legg Experimental [Page 42]

RFC 4911 Encoding Instructions for RXER July 2007

 (b) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is the general extension
 terminal followed by the non-terminal for the extension
 insertion point.

 (c) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is empty.

 (4) If the base type is subject to a HOLLOW-INSERTIONS encoding
 instruction, then a production is added to the grammar where the
 left-hand side is N and the right-hand side is empty. This
 production is an insertion point production.

 (5) If the base type is subject to a SINGULAR-INSERTIONS encoding
 instruction, then a production is added to the grammar where the
 left-hand side is N and the right-hand side is the general
 extension terminal. This production is an insertion point
 production.

 (6) If the base type is subject to a UNIFORM-INSERTIONS encoding
 instruction, then:

 (a) A production is added to the grammar where the left-hand side
 is N and the right-hand side is the general extension
 terminal.

 Aside: This production is used to verify the correctness
 of an ASN.1 type definition, but would not be used in the
 implementation of an RXER decoder. The next production
 takes precedence over it for accepting an unknown element.

 (b) A production is added to the grammar where the left-hand side
 is N and the right-hand side is the terminal for the
 extension insertion point of the base type followed by the
 non-terminal for the extension insertion point. This
 production is an insertion point production.

 (c) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is the terminal for the
 extension insertion point followed by the non-terminal for
 the extension insertion point.

 (d) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is empty.

Legg Experimental [Page 43]

RFC 4911 Encoding Instructions for RXER July 2007

 (7) If the base type is subject to a MULTIFORM-INSERTIONS encoding
 instruction, then:

 (a) A production is added to the grammar where the left-hand side
 is N and the right-hand side is the general extension
 terminal followed by the non-terminal for the extension
 insertion point of the base type. This production is an
 insertion point production.

 (b) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is the general extension
 terminal followed by the non-terminal for the extension
 insertion point.

 (c) A production is added to the grammar where the left-hand side
 is the non-terminal for the extension insertion point of the
 base type and the right-hand side is empty.

 If an ExtensionAdditionAlternative is a NamedType, then a production
 is added to the grammar where the left-hand side is the non-terminal
 for the ExtensionAdditionAlternative and the right-hand side is the
 primary non-terminal for the NamedType.

 If an ExtensionAdditionAlternative is an
 ExtensionAdditionAlternativesGroup, then a production is added to the
 grammar for each NamedType nested in the
 ExtensionAdditionAlternativesGroup, where the left-hand side is the
 non-terminal for the ExtensionAdditionAlternative and the right-hand
 side is the primary non-terminal for the NamedType.

Legg Experimental [Page 44]

RFC 4911 Encoding Instructions for RXER July 2007

 Example

 Consider the following ASN.1 type definition:

 CHOICE {
 -- Start of RootAlternativeTypeList.
 one BOOLEAN,
 two INTEGER,
 -- End of RootAlternativeTypeList.
 ...,
 -- Start of ExtensionAdditionAlternatives.
 three INTEGER, -- First ExtensionAdditionAlternative (E1).
 [[-- An ExtensionAdditionAlternativesGroup.
 four UTF8String,
 five INTEGER
]] -- Second ExtensionAdditionAlternative (E2).
 -- The extension insertion point is here (I1).
 }

 Here is the grammar derived from this type:

 S ::= one
 S ::= two
 S ::= E1
 S ::= E2
 S ::= I1

 I1 ::= "*" I1
 I1 ::=

 E1 ::= three
 E2 ::= four
 E2 ::= five

 one ::= "one"
 two ::= "two"
 three ::= "three"
 four ::= "four"
 five ::= "five"

 If the CHOICE type were subject to a NO-INSERTIONS encoding
 instruction, then the fifth, sixth, and seventh productions would
 be removed.

 If the CHOICE type were subject to a HOLLOW-INSERTIONS encoding
 instruction, then the fifth, sixth, and seventh productions would
 be replaced by:

Legg Experimental [Page 45]

RFC 4911 Encoding Instructions for RXER July 2007

 S ::=

 If the CHOICE type were subject to a SINGULAR-INSERTIONS encoding
 instruction, then the fifth, sixth, and seventh productions would
 be replaced by:

 S ::= "*"

 If the CHOICE type were subject to a UNIFORM-INSERTIONS encoding
 instruction, then the fifth and sixth productions would be
 replaced by:

 S ::= "*"
 S ::= "*1" I1

 I1 ::= "*1" I1

 If the CHOICE type were subject to a MULTIFORM-INSERTIONS encoding
 instruction, then the fifth production would be replaced by:

 S ::= "*" I1

 Constraints on a SEQUENCE, SET, or CHOICE type are ignored. They do
 not affect the grammar being generated.

 Aside: This avoids an awkward situation where values of a subtype
 have to be decoded differently from values of the parent type. It
 also simplifies the verification procedure.

 Given a primary non-terminal, N, and a type that has a SEQUENCE OF or
 SET OF base type and that permits a value of size zero (i.e., an
 empty sequence or set):

 (1) a production is added to the grammar where the left-hand side of
 the production is N and the right-hand side is the primary
 non-terminal for the NamedType of the component of the
 SEQUENCE OF or SET OF base type, followed by N, and

 (2) a production is added to the grammar where the left-hand side of
 the production is N and the right-hand side is empty.

 Given a primary non-terminal, N, a secondary non-terminal, N’, and a
 type that has a SEQUENCE OF or SET OF base type and that does not
 permit a value of size zero:

Legg Experimental [Page 46]

RFC 4911 Encoding Instructions for RXER July 2007

 (1) a production is added to the grammar where the left-hand side of
 the production is N and the right-hand side is the primary
 non-terminal for the NamedType of the component of the
 SEQUENCE OF or SET OF base type, followed by N’, and

 (2) a production is added to the grammar where the left-hand side of
 the production is N’ and the right-hand side is the primary
 non-terminal for the NamedType of the component of the
 SEQUENCE OF or SET OF base type, followed by N’, and

 (3) a production is added to the grammar where the left-hand side of
 the production is N’ and the right-hand side is empty.

 Example

 Consider the following ASN.1 type definition:

 SEQUENCE SIZE(1..MAX) OF number INTEGER

 Here is the grammar derived from this type:

 S ::= number S’
 S’ ::= number S’
 S’ ::=

 number ::= "number"

 All inner subtyping (InnerTypeContraints) is ignored for the purposes
 of deciding whether a value of size zero is permitted by a
 SEQUENCE OF or SET OF type.

 This completes the description of the transformation of ASN.1
 combining type definitions into a grammar.

25.1.2. Unique Component Attribution

 This section describes conditions that the grammar must satisfy so
 that each element and attribute in a received RXER encoding can be
 uniquely associated with an ASN.1 component definition.

 Definition (used by the grammar): A non-terminal, N, is used by the
 grammar if:

 (1) N is the start symbol or

 (2) N appears on the right-hand side of a production where the
 non-terminal on the left-hand side is used by the grammar.

Legg Experimental [Page 47]

RFC 4911 Encoding Instructions for RXER July 2007

 Definition (multiple derivation paths): A non-terminal, N, has
 multiple derivation paths if:

 (1) N appears on the right-hand side of a production where the
 non-terminal on the left-hand side has multiple derivation paths,
 or

 (2) N appears on the right-hand side of more than one production
 where the non-terminal on the left-hand side is used by the
 grammar, or

 (3) N is the start symbol and it appears on the right-hand side of a
 production where the non-terminal on the left-hand side is used
 by the grammar.

 For every ASN.1 type with a base type containing components that are
 subject to a GROUP encoding instruction, the grammar derived by the
 method described in this document MUST NOT have:

 (1) two or more primary non-terminals that are used by the grammar
 and are associated with element components having the same
 expanded name, or

 (2) two or more primary non-terminals that are used by the grammar
 and are associated with attribute components having the same
 expanded name, or

 (3) a primary non-terminal that has multiple derivation paths and is
 associated with an attribute component.

 Aside: Case (1) is in response to component referencing notations
 that are evaluated with respect to the XML encoding of an abstract
 value. Case (1) guarantees, without having to do extensive
 testing (which would necessarily have to take account of encoding
 instructions for all other encoding rules), that all sibling
 elements with the same expanded name will be associated with
 equivalent type definitions. Such equivalence allows a component
 referenced by element name to be re-encoded using a different set
 of ASN.1 encoding rules without ambiguity as to which type
 definition and encoding instructions apply.

 Cases (2) and (3) ensure that an attribute name is always uniquely
 associated with one component that can occur at most once and is
 always nested in the same part of an abstract value.

Legg Experimental [Page 48]

RFC 4911 Encoding Instructions for RXER July 2007

 Example

 The following example types illustrate various uses and misuses of
 the GROUP encoding instruction with respect to unique component
 attribution:

 TA ::= SEQUENCE {
 a [GROUP] TB,
 b [GROUP] CHOICE {
 a [GROUP] TB,
 b [NAME AS "c"] [ATTRIBUTE] INTEGER,
 c INTEGER,
 d TB,
 e [GROUP] TD,
 f [ATTRIBUTE] UTF8String
 },
 c [ATTRIBUTE] INTEGER,
 d [GROUP] SEQUENCE OF
 a [GROUP] SEQUENCE {
 a [ATTRIBUTE] OBJECT IDENTIFIER,
 b INTEGER
 },
 e [NAME AS "c"] INTEGER,
 COMPONENTS OF TD
 }

 TB ::= SEQUENCE {
 a INTEGER,
 b [ATTRIBUTE] BOOLEAN,
 COMPONENTS OF TC
 }

 TC ::= SEQUENCE {
 f OBJECT IDENTIFIER
 }

 TD ::= SEQUENCE {
 g OBJECT IDENTIFIER
 }

 The grammar for TA is constructed after performing the
 COMPONENTS OF transformation. The result of this transformation
 is shown next. This example will depart from the usual convention
 of using just the identifier of a NamedType to represent the
 primary non-terminal for that NamedType. A label relative to the
 outermost type will be used instead to better illustrate unique
 component attribution. The labels used for the non-terminals are
 shown down the right-hand side.

Legg Experimental [Page 49]

RFC 4911 Encoding Instructions for RXER July 2007

 TA ::= SEQUENCE {
 a [GROUP] TB, -- TA.a
 b [GROUP] CHOICE { -- TA.b
 a [GROUP] TB, -- TA.b.a
 b [NAME AS "c"] [ATTRIBUTE] INTEGER, -- TA.b.b
 c INTEGER, -- TA.b.c
 d TB, -- TA.b.d
 e [GROUP] TD, -- TA.b.e
 f [ATTRIBUTE] UTF8String -- TA.b.f
 },
 c [ATTRIBUTE] INTEGER, -- TA.c
 d [GROUP] SEQUENCE OF -- TA.d
 a [GROUP] SEQUENCE { -- TA.d.a
 a [ATTRIBUTE] OBJECT IDENTIFIER, -- TA.d.a.a
 b INTEGER -- TA.d.a.b
 },
 e [NAME AS "c"] INTEGER, -- TA.e
 g OBJECT IDENTIFIER -- TA.g
 }

 TB ::= SEQUENCE {
 a INTEGER, -- TB.a
 b [ATTRIBUTE] BOOLEAN, -- TB.b
 f OBJECT IDENTIFIER -- TB.f
 }

 -- Type TC is no longer of interest. --

 TD ::= SEQUENCE {
 g OBJECT IDENTIFIER -- TD.g
 }

 The associated grammar is:

 S ::= TA.a TA.b TA.c TA.d TA.e TA.g

 TA.a ::= TB.a TB.b TB.f

 TB.a ::= "a"
 TB.b ::= "@b"
 TB.f ::= "f"

 TA.b ::= TA.b.a
 TA.b ::= TA.b.b
 TA.b ::= TA.b.c
 TA.b ::= TA.b.d
 TA.b ::= TA.b.e
 TA.b ::= TA.b.f

Legg Experimental [Page 50]

RFC 4911 Encoding Instructions for RXER July 2007

 TA.b.a ::= TB.a TB.b TB.f
 TA.b.b ::= "@c"
 TA.b.c ::= "c"
 TA.b.d ::= "d"
 TA.b.e ::= TD.g
 TA.b.f ::= "@f"

 TD.g ::= "g"

 TA.c ::= "@c"

 TA.d ::= TA.d.a TA.d
 TA.d ::=

 TA.d.a ::= TA.d.a.a TA.d.a.b

 TA.d.a.a := "@a"
 TA.d.a.b ::= "b"

 TA.e ::= "c"

 TA.g ::= "g"

 All the non-terminals are used by the grammar.

 The type definition for TA is invalid because there are two
 instances where two or more primary non-terminals are associated
 with element components having the same expanded name:

 (1) TA.b.c and TA.e (both generate the terminal "c"), and

 (2) TD.g and TA.g (both generate the terminal "g").

 In case (2), TD.g and TA.g are derived from the same instance of
 NamedType notation, but become distinct components following the
 COMPONENTS OF transformation. AUTOMATIC tagging is applied after
 the COMPONENTS OF transformation, which means that the types of
 the components corresponding to TD.g and TA.g will end up with
 different tags, and therefore the types will not be equivalent.

 The type definition for TA is also invalid because there is one
 instance where two or more primary non-terminals are associated
 with attribute components having the same expanded name: TA.b.b
 and TA.c (both generate the terminal "@c").

Legg Experimental [Page 51]

RFC 4911 Encoding Instructions for RXER July 2007

 The non-terminals with multiple derivation paths are: TA.d,
 TA.d.a, TA.d.a.a, TA.d.a.b, TB.a, TB.b, and TB.f. The type
 definition for TA is also invalid because TA.d.a.a and TB.b are
 primary non-terminals that are associated with an attribute
 component.

25.1.3. Deterministic Grammars

 Let the First Set of a production P, denoted First(P), be the set of
 all element terminals T where T is the first element terminal in a
 sequence of terminals that can be generated from the right-hand side
 of P. There can be any number of leading attribute terminals before
 T.

 Let the Follow Set of a non-terminal N, denoted Follow(N), be the set
 of all element terminals T where T is the first element terminal
 following N in a sequence of non-terminals and terminals that can be
 generated from the grammar. There can be any number of attribute
 terminals between N and T. If a sequence of non-terminals and
 terminals can be generated from the grammar where N is not followed
 by any element terminals, then Follow(N) also contains a special end
 terminal, denoted by "$".

 Aside: If N does not appear on the right-hand side of any
 production, then Follow(N) will be empty.

 For a production P, let the predicate Empty(P) be true if and only if
 the empty sequence of terminals can be generated from P. Otherwise,
 Empty(P) is false.

 Definition (base grammar): The base grammar is a rewriting of the
 grammar in which the non-terminals for every ExtensionAddition and
 ExtensionAdditionAlternative are removed from the right-hand side of
 all productions.

 For a production P, let the predicate Preselected(P) be true if and
 only if every sequence of terminals that can be generated from the
 right-hand side of P using only the base grammar contains at least
 one attribute terminal. Otherwise, Preselected(P) is false.

 The Select Set of a production P, denoted Select(P), is empty if
 Preselected(P) is true; otherwise, it contains First(P). Let N be
 the non-terminal on the left-hand side of P. If Empty(P) is true,
 then Select(P) also contains Follow(N).

Legg Experimental [Page 52]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: It may appear somewhat dubious to include the attribute
 components in the grammar because, in reality, attributes appear
 unordered within the start tag of an element, and not interspersed
 with the child elements as the grammar would suggest. This is why
 attribute terminals are ignored in composing the First Sets and
 Follow Sets. However, the attribute terminals are important in
 composing the Select Sets because they can preselect a production
 and can prevent a production from being able to generate an empty
 sequence of terminals. In real terms, this corresponds to an RXER
 decoder using the attributes to determine the presence or absence
 of optional components and to select between the alternatives of a
 CHOICE, even before considering the child elements.

 An attribute appearing in an extension isn’t used to preselect a
 production since, in general, a decoder using an earlier version
 of the specification would not be able to associate the attribute
 with any particular extension insertion point.

 Let the Reach Set of a non-terminal N, denoted Reach(N), be the set
 of all element terminals T where T appears in a sequence of terminals
 that can be generated from N.

 Aside: It can be readily shown that all the optional attribute
 components and all but one of the mandatory attribute components
 of a SEQUENCE or SET type can be ignored in constructing the
 grammar because their omission does not alter the First, Follow,
 Select, or Reach Sets, or the evaluation of the Preselected and
 Empty predicates.

 A grammar is deterministic (for the purposes of an RXER decoder) if
 and only if:

 (1) there do not exist two productions P and Q, with the same
 non-terminal on the left-hand side, where the intersection of
 Select(P) and Select(Q) is not empty, and

 (2) there does not exist a non-terminal E for an ExtensionAddition or
 ExtensionAdditionAlternative where the intersection of Reach(E)
 and Follow(E) is not empty.

 Aside: In case (1), if the intersection is not empty, then a
 decoder would have two or more possible ways to attempt to decode
 the input into an abstract value. In case (2), if the
 intersection is not empty, then a decoder using an earlier version
 of the ASN.1 specification would confuse an element in an unknown
 (to that decoder) extension with a known component following the
 extension.

Legg Experimental [Page 53]

RFC 4911 Encoding Instructions for RXER July 2007

 Aside: In the absence of any attribute components, case (1) is the
 test for an LL(1) grammar.

 For every ASN.1 type with a base type containing components that are
 subject to a GROUP encoding instruction, the grammar derived by the
 method described in this document MUST be deterministic.

25.1.4. Attributes in Unknown Extensions

 An insertion point production is able to accept unknown attributes if
 the non-terminal on the left-hand side of the production does not
 have multiple derivation paths.

 Aside: If the non-terminal has multiple derivation paths, then any
 future extension cannot possibly contain an attribute component
 because that would violate the requirements of Section 25.1.2.

 For a deterministic grammar, there is only one possible way to
 construct a sequence of element terminals matching the element
 content of an element in a correctly formed RXER encoding. Any
 unknown attributes of the element are accepted if at least one
 insertion point production that is able to accept unknown attributes
 is used in that construction.

 Example

 Consider this type definition:

 CHOICE {
 one UTF8String,
 two [GROUP] SEQUENCE {
 three INTEGER,
 ...
 }
 }

 The associated grammar is:

 S ::= one
 S ::= two

 two ::= three I1

 I1 ::= "*" I1
 I1 ::=

 one ::= "one"
 three ::= "three"

Legg Experimental [Page 54]

RFC 4911 Encoding Instructions for RXER July 2007

 The third production is an insertion point production, and it is
 able to accept unknown attributes.

 When decoding a value of this type, if the element content
 contains a <one> child element, then any unrecognized attribute
 would be illegal as the insertion point production would not be
 used to recognize the input (the "one" alternative does not admit
 an extension insertion point). If the element content contains a
 <three> element, then an unrecognized attribute would be accepted
 because the insertion point production would be used to recognize
 the input (the "two" alternative that generates the <three>
 element has an extensible type).

 If the SEQUENCE type were prefixed by a NO-INSERTIONS encoding
 instruction, then the third, fourth, and fifth productions would
 be replaced by:

 two ::= three

 With this change, any unrecognized attribute would be illegal for
 the "two" alternative also, since the replacement production is
 not an insertion point production.

 If more than one insertion point production that is able to accept
 unknown attributes is used in constructing a matching sequence of
 element terminals, then a decoder is free to associate an
 unrecognized attribute with any one of the extension insertion points
 corresponding to those insertion point productions. The
 justification for doing so comes from the following two observations:

 (1) If the encoding of an abstract value contains an extension where
 the type of the extension is unknown to the receiver, then it is
 generally impossible to re-encode the value using a different set
 of encoding rules, including the canonical variant of the
 received encoding. This is true no matter which encoding rules
 are being used. It is desirable for a decoder to be able to
 accept and store the raw encoding of an extension without raising
 an error, and to re-insert the raw encoding of the extension when
 re-encoding the abstract value using the same non-canonical
 encoding rules. However, there is little more that an
 application can do with an unknown extension.

 An application using RXER can successfully accept, store, and
 re-encode an unrecognized attribute regardless of which extension
 insertion point it might be ascribed to.

Legg Experimental [Page 55]

RFC 4911 Encoding Instructions for RXER July 2007

 (2) Even if there is a single extension insertion point, an unknown
 extension could still be the encoding of a value of any one of an
 infinite number of valid type definitions. For example, an
 attribute or element component could be nested to any arbitrary
 depth within CHOICEs whose components are subject to GROUP
 encoding instructions.

 Aside: A similar series of nested CHOICEs could describe an
 unknown extension in a Basic Encoding Rules (BER) encoding
 [X.690].

26. Security Considerations

 ASN.1 compiler implementors should take special care to be thorough
 in checking that the GROUP encoding instruction has been correctly
 used; otherwise, ASN.1 specifications with ambiguous RXER encodings
 could be deployed.

 Ambiguous encodings mean that the abstract value recovered by a
 decoder may differ from the original abstract value that was encoded.
 If that is the case, then a digital signature generated with respect
 to the original abstract value (using a canonical encoding other than
 CRXER) will not be successfully verified by a receiver using the
 decoded abstract value. Also, an abstract value may have
 security-sensitive fields, and in particular, fields used to grant or
 deny access. If the decoded abstract value differs from the encoded
 abstract value, then a receiver using the decoded abstract value will
 be applying different security policy than that embodied in the
 original abstract value.

27. References

27.1. Normative References

 [BCP14] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [URI] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", STD 66, RFC
 3986, January 2005.

 [RXER] Legg, S. and D. Prager, "Robust XML Encoding Rules (RXER)
 for Abstract Syntax Notation One (ASN.1)", RFC 4910, July
 2007.

 [ASN.X] Legg, S., "Abstract Syntax Notation X (ASN.X)", RFC 4912,
 July 2007.

Legg Experimental [Page 56]

RFC 4911 Encoding Instructions for RXER July 2007

 [X.680] ITU-T Recommendation X.680 (07/02) | ISO/IEC 8824-1,
 Information technology - Abstract Syntax Notation One
 (ASN.1): Specification of basic notation.

 [X.680-1] ITU-T Recommendation X.680 (2002) Amendment 1 (10/03) |
 ISO/IEC 8824-1:2002/Amd 1:2004, Support for EXTENDED-XER.

 [X.683] ITU-T Recommendation X.683 (07/02) | ISO/IEC 8824-4,
 Information technology - Abstract Syntax Notation One
 (ASN.1): Parameterization of ASN.1 specifications.

 [XML10] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E. and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fourth
 Edition)", W3C Recommendation,
 http://www.w3.org/TR/2006/REC-xml-20060816, August 2006.

 [XMLNS10] Bray, T., Hollander, D., Layman, A., and R. Tobin,
 "Namespaces in XML 1.0 (Second Edition)", W3C
 Recommendation,
 http://www.w3.org/TR/2006/REC-xml-names-20060816, August
 2006.

 [XSD1] Thompson, H., Beech, D., Maloney, M. and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", W3C
 Recommendation,
 http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/,
 October 2004.

 [XSD2] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", W3C Recommendation,
 http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/,
 October 2004.

 [RNG] Clark, J. and M. Makoto, "RELAX NG Tutorial", OASIS
 Committee Specification, http://www.oasis-open.org/
 committees/relax-ng/tutorial-20011203.html, December 2001.

27.2. Informative References

 [INFOSET] Cowan, J. and R. Tobin, "XML Information Set (Second
 Edition)", W3C Recommendation, http://www.w3.org/
 TR/2004/REC-xml-infoset-20040204, February 2004.

 [X.690] ITU-T Recommendation X.690 (07/02) | ISO/IEC 8825-1,
 Information technology - ASN.1 encoding rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER).

Legg Experimental [Page 57]

RFC 4911 Encoding Instructions for RXER July 2007

Appendix A. GROUP Encoding Instruction Examples

 This appendix is non-normative.

 This appendix contains examples of both correct and incorrect use of
 the GROUP encoding instruction, determined with respect to the
 grammars derived from the example type definitions. The productions
 of the grammars are labeled for convenience. Sets and predicates for
 non-terminals with only one production will be omitted from the
 examples since they never indicate non-determinism.

 The requirements of Section 25.1.2 ("Unique Component Attribution")
 are satisfied by all the examples in this appendix and the appendices
 that follow it.

A.1. Example 1

 Consider this type definition:

 SEQUENCE {
 one [GROUP] SEQUENCE {
 two UTF8String OPTIONAL
 } OPTIONAL,
 three INTEGER
 }

 The associated grammar is:

 P1: S ::= one three
 P2: one ::= two
 P3: one ::=
 P4: two ::= "two"
 P5: two ::=
 P6: three ::= "three"

 Select Sets have to be evaluated to test the validity of the type
 definition. The grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P3) = { }
 Preselected(P2) = Preselected(P3) = false
 Empty(P2) = Empty(P3) = true
 Follow(one) = { "three" }
 Select(P2) = First(P2) + Follow(one) = { "two", "three" }
 Select(P3) = First(P3) + Follow(one) = { "three" }

Legg Experimental [Page 58]

RFC 4911 Encoding Instructions for RXER July 2007

 First(P4) = { "two" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(two) = { "three" }
 Select(P4) = First(P4) = { "two" }
 Select(P5) = First(P5) + Follow(two) = { "three" }

 The intersection of Select(P2) and Select(P3) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the RXER encoding of a value of the type does not have a
 child element <two>, then it is not possible to determine whether the
 "one" component is present or absent in the value.

 Now consider this type definition with attributes in the "one"
 component:

 SEQUENCE {
 one [GROUP] SEQUENCE {
 two UTF8String OPTIONAL,
 four [ATTRIBUTE] BOOLEAN,
 five [ATTRIBUTE] BOOLEAN OPTIONAL
 } OPTIONAL,
 three INTEGER
 }

 The associated grammar is:

 P1: S ::= one three
 P2: one ::= two four five
 P3: one ::=
 P4: two ::= "two"
 P5: two ::=
 P6: four ::= "@four"
 P7: five ::= "@five"
 P8: five ::=
 P9: three ::= "three"

 This grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P3) = { }
 Preselected(P3) = Empty(P2) = false
 Preselected(P2) = Empty(P3) = true
 Follow(one) = { "three" }
 Select(P2) = { }
 Select(P3) = First(P3) + Follow(one) = { "three" }

Legg Experimental [Page 59]

RFC 4911 Encoding Instructions for RXER July 2007

 First(P4) = { "two" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(two) = { "three" }
 Select(P4) = First(P4) = { "two" }
 Select(P5) = First(P5) + Follow(two) = { "three" }

 First(P7) = { }
 First(P8) = { }
 Preselected(P8) = Empty(P7) = false
 Preselected(P7) = Empty(P8) = true
 Follow(five) = { "three" }
 Select(P7) = { }
 Select(P8) = First(P8) + Follow(five) = { "three" }

 The intersection of Select(P2) and Select(P3) is empty, as is the
 intersection of Select(P4) and Select(P5) and the intersection of
 Select(P7) and Select(P8); hence, the grammar is deterministic, and
 the type definition is valid. In a correct RXER encoding, the "one"
 component will be present if and only if the "four" attribute is
 present.

A.2. Example 2

 Consider this type definition:

 CHOICE {
 one [GROUP] SEQUENCE {
 two [ATTRIBUTE] BOOLEAN OPTIONAL
 },
 three INTEGER,
 four [GROUP] SEQUENCE {
 five BOOLEAN OPTIONAL
 }
 }

 The associated grammar is:

 P1: S ::= one
 P2: S ::= three
 P3: S ::= four
 P4: one ::= two
 P5: two ::= "@two"
 P6: two ::=
 P7: three ::= "three"
 P8: four ::= five
 P9: five ::= "five"

Legg Experimental [Page 60]

RFC 4911 Encoding Instructions for RXER July 2007

 P10: five ::=

 This grammar leads to the following sets and predicates:

 First(P1) = { }
 First(P2) = { "three" }
 First(P3) = { "five" }
 Preselected(P1) = Preselected(P2) = Preselected(P3) = false
 Empty(P2) = false
 Empty(P1) = Empty(P3) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) + Follow(S) = { "$" }
 Select(P2) = First(P2) = { "three" }
 Select(P3) = First(P3) + Follow(S) = { "five", "$" }

 First(P5) = { }
 First(P6) = { }
 Preselected(P6) = Empty(P5) = false
 Preselected(P5) = Empty(P6) = true
 Follow(two) = { "$" }
 Select(P5) = { }
 Select(P6) = First(P6) + Follow(two) = { "$" }

 First(P9) = { "five" }
 First(P10) = { }
 Preselected(P9) = Preselected(P10) = Empty(P9) = false
 Empty(P10) = true
 Follow(five) = { "$" }
 Select(P9) = First(P9) = { "five" }
 Select(P10) = First(P10) + Follow(five) = { "$" }

 The intersection of Select(P1) and Select(P3) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the RXER encoding of a value of the type is empty, then it
 is not possible to determine whether the "one" alternative or the
 "four" alternative has been chosen.

 Now consider this slightly different type definition:

 CHOICE {
 one [GROUP] SEQUENCE {
 two [ATTRIBUTE] BOOLEAN
 },
 three INTEGER,
 four [GROUP] SEQUENCE {
 five BOOLEAN OPTIONAL
 }
 }

Legg Experimental [Page 61]

RFC 4911 Encoding Instructions for RXER July 2007

 The associated grammar is:

 P1: S ::= one
 P2: S ::= three
 P3: S ::= four
 P4: one ::= two
 P5: two ::= "@two"
 P6: three ::= "three"
 P7: four ::= five
 P8: five ::= "five"
 P9: five ::=

 This grammar leads to the following sets and predicates:

 First(P1) = { }
 First(P2) = { "three" }
 First(P3) = { "five" }
 Preselected(P2) = Preselected(P3) = false
 Empty(P1) = Empty(P2) = false
 Preselected(P1) = Empty(P3) = true
 Follow(S) = { "$" }
 Select(P1) = { }
 Select(P2) = First(P2) = { "three" }
 Select(P3) = First(P3) + Follow(S) = { "five", "$" }

 First(P8) = { "five" }
 First(P9) = { }
 Preselected(P8) = Preselected(P9) = Empty(P8) = false
 Empty(P9) = true
 Follow(five) = { "$" }
 Select(P8) = First(P8) = { "five" }
 Select(P9) = First(P9) + Follow(five) = { "$" }

 The intersection of Select(P1) and Select(P2) is empty, the
 intersection of Select(P1) and Select(P3) is empty, the intersection
 of Select(P2) and Select(P3) is empty, and the intersection of
 Select(P8) and Select(P9) is empty; hence, the grammar is
 deterministic, and the type definition is valid. The "one" and
 "four" alternatives can be distinguished because the "one"
 alternative has a mandatory attribute.

Legg Experimental [Page 62]

RFC 4911 Encoding Instructions for RXER July 2007

A.3. Example 3

 Consider this type definition:

 SEQUENCE {
 one [GROUP] CHOICE {
 two [ATTRIBUTE] BOOLEAN,
 three [GROUP] SEQUENCE OF number INTEGER
 } OPTIONAL
 }

 The associated grammar is:

 P1: S ::= one
 P2: one ::= two
 P3: one ::= three
 P4: one ::=
 P5: two ::= "@two"
 P6: three ::= number three
 P7: three ::=
 P8: number ::= "number"

 This grammar leads to the following sets and predicates:

 First(P2) = { }
 First(P3) = { "number" }
 First(P4) = { }
 Preselected(P3) = Preselected(P4) = Empty(P2) = false
 Preselected(P2) = Empty(P3) = Empty(P4) = true
 Follow(one) = { "$" }
 Select(P2) = { }
 Select(P3) = First(P3) + Follow(one) = { "number", "$" }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 First(P6) = { "number" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true
 Follow(three) = { "$" }
 Select(P6) = First(P6) = { "number" }
 Select(P7) = First(P7) + Follow(three) = { "$" }

 The intersection of Select(P3) and Select(P4) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the RXER encoding of a value of the type is empty, then it
 is not possible to determine whether the "one" component is absent or
 the empty "three" alternative has been chosen.

Legg Experimental [Page 63]

RFC 4911 Encoding Instructions for RXER July 2007

A.4. Example 4

 Consider this type definition:

 SEQUENCE {
 one [GROUP] CHOICE {
 two [ATTRIBUTE] BOOLEAN,
 three [ATTRIBUTE] BOOLEAN
 } OPTIONAL
 }

 The associated grammar is:

 P1: S ::= one
 P2: one ::= two
 P3: one ::= three
 P4: one ::=
 P5: two ::= "@two"
 P6: three ::= "@three"

 This grammar leads to the following sets and predicates:

 First(P2) = { }
 First(P3) = { }
 First(P4) = { }
 Preselected(P4) = Empty(P2) = Empty(P3) = false
 Preselected(P2) = Preselected(P3) = Empty(P4) = true
 Follow(one) = { "$" }
 Select(P2) = { }
 Select(P3) = { }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 The intersection of Select(P2) and Select(P3) is empty, the
 intersection of Select(P2) and Select(P4) is empty, and the
 intersection of Select(P3) and Select(P4) is empty; hence, the
 grammar is deterministic, and the type definition is valid.

A.5. Example 5

 Consider this type definition:

 SEQUENCE {
 one [GROUP] SEQUENCE OF number INTEGER OPTIONAL
 }

Legg Experimental [Page 64]

RFC 4911 Encoding Instructions for RXER July 2007

 The associated grammar is:

 P1: S ::= one
 P2: one ::= number one
 P3: one ::=
 P4: one ::=
 P5: number ::= "number"

 P3 is generated during the processing of the SEQUENCE OF type. P4 is
 generated because the "one" component is optional.

 This grammar leads to the following sets and predicates:

 First(P2) = { "number" }
 First(P3) = { }
 First(P4) = { }
 Preselected(P2) = Preselected(P3) = Preselected(P4) = false
 Empty(P2) = false
 Empty(P3) = Empty(P4) = true
 Follow(one) = { "$" }
 Select(P2) = First(P2) = { "number" }
 Select(P3) = First(P3) + Follow(one) = { "$" }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 The intersection of Select(P3) and Select(P4) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the RXER encoding of a value of the type does not have any
 <number> child elements, then it is not possible to determine whether
 the "one" component is present or absent in the value.

 Consider this similar type definition with a SIZE constraint:

 SEQUENCE {
 one [GROUP] SEQUENCE SIZE(1..MAX) OF number INTEGER OPTIONAL
 }

 The associated grammar is:

 P1: S ::= one
 P2: one ::= number one’
 P3: one’ ::= number one’
 P4: one’ ::=
 P5: one ::=
 P6: number ::= "number"

Legg Experimental [Page 65]

RFC 4911 Encoding Instructions for RXER July 2007

 This grammar leads to the following sets and predicates:

 First(P2) = { "number" }
 First(P5) = { }
 Preselected(P2) = Preselected(P5) = Empty(P2) = false
 Empty(P5) = true
 Follow(one) = { "$" }
 Select(P2) = First(P2) = { "number" }
 Select(P5) = First(P5) + Follow(one) = { "$" }

 First(P3) = { "number" }
 First(P4) = { }
 Preselected(P3) = Preselected(P4) = Empty(P3) = false
 Empty(P4) = true
 Follow(one’) = { "$" }
 Select(P3) = First(P3) = { "number" }
 Select(P4) = First(P4) + Follow(one’) = { "$" }

 The intersection of Select(P2) and Select(P5) is empty, as is the
 intersection of Select(P3) and Select(P4); hence, the grammar is
 deterministic, and the type definition is valid. If there are no
 <number> child elements, then the "one" component is necessarily
 absent and there is no ambiguity.

A.6. Example 6

 Consider this type definition:

 SEQUENCE {
 beginning [GROUP] List,
 middle UTF8String OPTIONAL,
 end [GROUP] List
 }

 List ::= SEQUENCE OF string UTF8String

 The associated grammar is:

 P1: S ::= beginning middle end
 P2: beginning ::= string beginning
 P3: beginning ::=
 P4: middle ::= "middle"
 P5: middle ::=
 P6: end ::= string end
 P7: end ::=
 P8: string ::= "string"

Legg Experimental [Page 66]

RFC 4911 Encoding Instructions for RXER July 2007

 This grammar leads to the following sets and predicates:

 First(P2) = { "string" }
 First(P3) = { }
 Preselected(P2) = Preselected(P3) = Empty(P2) = false
 Empty(P3) = true
 Follow(beginning) = { "middle", "string", "$" }
 Select(P2) = First(P2) = { "string" }
 Select(P3) = First(P3) + Follow(beginning)
 = { "middle", "string", "$" }

 First(P4) = { "middle" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(middle) = { "string", "$" }
 Select(P4) = First(P4) = { "middle" }
 Select(P5) = First(P5) + Follow(middle) = { "string", "$" }

 First(P6) = { "string" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true
 Follow(end) = { "$" }
 Select(P6) = First(P6) = { "string" }
 Select(P7) = First(P7) + Follow(end) = { "$" }

 The intersection of Select(P2) and Select(P3) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid.

 Now consider the following type definition:

 SEQUENCE {
 beginning [GROUP] List,
 middleAndEnd [GROUP] SEQUENCE {
 middle UTF8String,
 end [GROUP] List
 } OPTIONAL
 }

 The associated grammar is:

 P1: S ::= beginning middleAndEnd
 P2: beginning ::= string beginning
 P3: beginning ::=
 P4: middleAndEnd ::= middle end
 P5: middleAndEnd ::=

Legg Experimental [Page 67]

RFC 4911 Encoding Instructions for RXER July 2007

 P6: middle ::= "middle"
 P7: end ::= string end
 P8: end ::=
 P9: string ::= "string"

 This grammar leads to the following sets and predicates:

 First(P2) = { "string" }
 First(P3) = { }
 Preselected(P2) = Preselected(P3) = Empty(P2) = false
 Empty(P3) = true
 Follow(beginning) = { "middle", "$" }
 Select(P2) = First(P2) = { "string" }
 Select(P3) = First(P3) + Follow(beginning) = { "middle", "$" }

 First(P4) = { "middle" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(middleAndEnd) = { "$" }
 Select(P4) = First(P4) = { "middle" }
 Select(P5) = First(P5) + Follow(middleAndEnd) = { "$" }

 First(P7) = { "string" }
 First(P8) = { }
 Preselected(P7) = Preselected(P8) = Empty(P7) = false
 Empty(P8) = true
 Follow(end) = { "$" }
 Select(P7) = First(P7) = { "string" }
 Select(P8) = First(P8) + Follow(end) = { "$" }

 The intersection of Select(P2) and Select(P3) is empty, as is the
 intersection of Select(P4) and Select(P5) and the intersection of
 Select(P7) and Select(P8); hence, the grammar is deterministic, and
 the type definition is valid.

A.7. Example 7

 Consider the following type definition:

 SEQUENCE SIZE(1..MAX) OF
 one [GROUP] SEQUENCE {
 two INTEGER OPTIONAL
 }

Legg Experimental [Page 68]

RFC 4911 Encoding Instructions for RXER July 2007

 The associated grammar is:

 P1: S ::= one S’
 P2: S’ ::= one S’
 P3: S’ ::=
 P4: one ::= two
 P5: two ::= "two"
 P6: two ::=

 This grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P3) = { }
 Preselected(P2) = Preselected(P3) = false
 Empty(P2) = Empty(P3) = true
 Follow(S’) = { "$" }
 Select(P2) = First(P2) + Follow(S’) = { "two", "$" }
 Select(P3) = First(P3) + Follow(S’) = { "$" }

 First(P5) = { "two" }
 First(P6) = { }
 Preselected(P5) = Preselected(P6) = Empty(P5) = false
 Empty(P6) = true
 Follow(two) = { "two", "$" }
 Select(P5) = First(P5) = { "two" }
 Select(P6) = First(P6) + Follow(two) = { "two", "$" }

 The intersection of Select(P2) and Select(P3) is not empty and the
 intersection of Select(P5) and Select(P6) is not empty; hence, the
 grammar is not deterministic, and the type definition is not valid.
 The encoding of a value of the type contains an indeterminate number
 of empty instances of the component type.

A.8. Example 8

 Consider the following type definition:

 SEQUENCE OF
 list [GROUP] SEQUENCE SIZE(1..MAX) OF number INTEGER

 The associated grammar is:

 P1: S ::= list S
 P2: S ::=
 P3: list ::= number list’
 P4: list’ ::= number list’
 P5: list’ ::=
 P6: number ::= "number"

Legg Experimental [Page 69]

RFC 4911 Encoding Instructions for RXER July 2007

 This grammar leads to the following sets and predicates:

 First(P1) = { "number" }
 First(P2) = { }
 Preselected(P1) = Preselected(P2) = Empty(P1) = false
 Empty(P2) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) = { "number" }
 Select(P2) = First(P2) + Follow(S) = { "$" }

 First(P4) = { "number" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(list’) = { "number", "$" }
 Select(P4) = First(P4) = { "number" }
 Select(P5) = First(P5) + Follow(list’) = { "number", "$" }

 The intersection of Select(P4) and Select(P5) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. The type describes a list of lists, but it is not possible
 for a decoder to determine where the outer lists begin and end.

A.9. Example 9

 Consider the following type definition:

 SEQUENCE OF item [GROUP] SEQUENCE {
 before [GROUP] OneAndTwo,
 core UTF8String,
 after [GROUP] OneAndTwo OPTIONAL
 }

 OneAndTwo ::= SEQUENCE {
 non-core UTF8String
 }

 The associated grammar is:

 P1: S ::= item S
 P2: S ::=
 P3: item ::= before core after
 P4: before ::= non-core
 P5: non-core ::= "non-core"
 P6: core ::= "core"
 P7: after ::= non-core
 P8: after ::=

Legg Experimental [Page 70]

RFC 4911 Encoding Instructions for RXER July 2007

 This grammar leads to the following sets and predicates:

 First(P1) = { "non-core" }
 First(P2) = { }
 Preselected(P1) = Preselected(P2) = Empty(P1) = false
 Empty(P2) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) = { "non-core" }
 Select(P2) = First(P2) + Follow(S) = { "$" }

 First(P7) = { "non-core" }
 First(P8) = { }
 Preselected(P7) = Preselected(P8) = Empty(P7) = false
 Empty(P8) = true
 Follow(after) = { "non-core", "$" }
 Select(P7) = First(P7) = { "non-core" }
 Select(P8) = First(P8) + Follow(after) = { "non-core", "$" }

 The intersection of Select(P7) and Select(P8) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. There is ambiguity between the end of one item and the start
 of the next. Without looking ahead in an encoding, it is not
 possible to determine whether a <non-core> element belongs with the
 preceding or following <core> element.

A.10. Example 10

 Consider the following type definition:

 CHOICE {
 one [GROUP] List,
 two [GROUP] SEQUENCE {
 three [ATTRIBUTE] UTF8String,
 four [GROUP] List
 }
 }

 List ::= SEQUENCE OF string UTF8String

 The associated grammar is:

 P1: S ::= one
 P2: S ::= two
 P3: one ::= string one
 P4: one ::=
 P5: two ::= three four
 P6: three ::= "@three"
 P7: four ::= string four

Legg Experimental [Page 71]

RFC 4911 Encoding Instructions for RXER July 2007

 P8: four ::=
 P9: string ::= "string"

 This grammar leads to the following sets and predicates:

 First(P1) = { "string" }
 First(P2) = { "string" }
 Preselected(P1) = Empty(P2) = false
 Preselected(P2) = Empty(P1) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) + Follow(S) = { "string", "$" }
 Select(P2) = { }

 First(P3) = { "string" }
 First(P4) = { }
 Preselected(P3) = Preselected(P4) = Empty(P3) = false
 Empty(P4) = true
 Follow(one) = { "$" }
 Select(P3) = First(P3) = { "string" }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 First(P7) = { "string" }
 First(P8) = { }
 Preselected(P7) = Preselected(P8) = Empty(P7) = false
 Empty(P8) = true
 Follow(four) = { "$" }
 Select(P7) = First(P7) = { "string" }
 Select(P8) = First(P8) + Follow(four) = { "$" }

 The intersection of Select(P1) and Select(P2) is empty, as is the
 intersection of Select(P3) and Select(P4) and the intersection of
 Select(P7) and Select(P8); hence, the grammar is deterministic, and
 the type definition is valid. Although both alternatives of the
 CHOICE can begin with a <string> element, an RXER decoder would use
 the presence of a "three" attribute to decide whether to select or
 disregard the "two" alternative.

 However, an attribute in an extension cannot be used to select
 between alternatives. Consider the following type definition:

Legg Experimental [Page 72]

RFC 4911 Encoding Instructions for RXER July 2007

 [SINGULAR-INSERTIONS] CHOICE {
 one [GROUP] List,
 ...,
 two [GROUP] SEQUENCE {
 three [ATTRIBUTE] UTF8String,
 four [GROUP] List
 } -- ExtensionAdditionAlternative (E1).
 -- The extension insertion point is here (I1).
 }

 List ::= SEQUENCE OF string UTF8String

 The associated grammar is:

 P1: S ::= one
 P10: S ::= E1
 P11: S ::= "*"
 P12: E1 ::= two
 P3: one ::= string one
 P4: one ::=
 P5: two ::= three four
 P6: three ::= "@three"
 P7: four ::= string four
 P8: four ::=
 P9: string ::= "string"

 This grammar leads to the following sets and predicates for P1, P10
 and P11:

 First(P1) = { "string" }
 First(P10) = { "string" }
 First(P11) = { "*" }
 Preselected(P1) = Preselected(P10) = Preselected(P11) = false
 Empty(P10) = Empty(P11) = false
 Empty(P1) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) + Follow(S) = { "string", "$" }
 Select(P10) = First(P10) = { "string" }
 Select(P11) = First(P11) = { "*" }

 Preselected(P10) evaluates to false because Preselected(P10) is
 evaluated on the base grammar, wherein P10 is rewritten as:

 P10: S ::=

Legg Experimental [Page 73]

RFC 4911 Encoding Instructions for RXER July 2007

 The intersection of Select(P1) and Select(P10) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. An RXER decoder using the original, unextended version of the
 definition would not know that the "three" attribute selects between
 the "one" alternative and the extension.

Appendix B. Insertion Encoding Instruction Examples

 This appendix is non-normative.

 This appendix contains examples showing the use of insertion encoding
 instructions to remove extension ambiguity arising from use of the
 GROUP encoding instruction.

B.1. Example 1

 Consider the following type definition:

 SEQUENCE {
 one [GROUP] SEQUENCE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three INTEGER OPTIONAL,
 ... -- Extension insertion point (I2).
 }

 The associated grammar is:

 P1: S ::= one three I2
 P2: one ::= two I1
 P3: two ::= "two"
 P4: I1 ::= "*" I1
 P5: I1 ::=
 P6: three ::= "three"
 P7: three ::=
 P8: I2 ::= "*" I2
 P9: I2 ::=

 This grammar leads to the following sets and predicates:

 First(P4) = { "*" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(I1) = { "three", "*", "$" }
 Select(P4) = First(P4) = { "*" }
 Select(P5) = First(P5) + Follow(I1) = { "three", "*", "$" }

Legg Experimental [Page 74]

RFC 4911 Encoding Instructions for RXER July 2007

 First(P6) = { "three" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true
 Follow(three) = { "*", "$" }
 Select(P6) = First(P6) = { "three" }
 Select(P7) = First(P7) + Follow(three) = { "*", "$" }

 First(P8) = { "*" }
 First(P9) = { }
 Preselected(P8) = Preselected(P9) = Empty(P8) = false
 Empty(P9) = true
 Follow(I2) = { "$" }
 Select(P8) = First(P8) = { "*" }
 Select(P9) = First(P9) + Follow(I2) = { "$" }

 The intersection of Select(P4) and Select(P5) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If an RXER decoder encounters an unrecognized element
 immediately after a <two> element, then it will not know whether to
 associate it with extension insertion point I1 or I2.

 The non-determinism can be resolved with either a NO-INSERTIONS or
 HOLLOW-INSERTIONS encoding instruction. Consider this revised type
 definition:

 SEQUENCE {
 one [GROUP] [HOLLOW-INSERTIONS] SEQUENCE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three INTEGER OPTIONAL,
 ... -- Extension insertion point (I2).
 }

 The associated grammar is:

 P1: S ::= one three I2
 P10: one ::= two
 P3: two ::= "two"
 P6: three ::= "three"
 P7: three ::=
 P8: I2 ::= "*" I2
 P9: I2 ::=

 With the addition of the HOLLOW-INSERTIONS encoding instruction, the
 P4 and P5 productions are no longer generated, and the conflict
 between Select(P4) and Select(P5) no longer exists. The Select Sets

Legg Experimental [Page 75]

RFC 4911 Encoding Instructions for RXER July 2007

 for P6, P7, P8, and P9 are unchanged. A decoder will now assume that
 an unrecognized element is to be associated with extension insertion
 point I2. It is still free to associate an unrecognized attribute
 with either extension insertion point. If a NO-INSERTIONS encoding
 instruction had been used, then an unrecognized attribute could only
 be associated with extension insertion point I2.

 The non-determinism could also be resolved by adding a NO-INSERTIONS
 or HOLLOW-INSERTIONS encoding instruction to the outer SEQUENCE:

 [HOLLOW-INSERTIONS] SEQUENCE {
 one [GROUP] SEQUENCE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three INTEGER OPTIONAL,
 ... -- Extension insertion point (I2).
 }

 The associated grammar is:

 P11: S ::= one three
 P2: one ::= two I1
 P3: two ::= "two"
 P4: I1 ::= "*" I1
 P5: I1 ::=
 P6: three ::= "three"
 P7: three ::=

 This grammar leads to the following sets and predicates:

 First(P4) = { "*" }
 First(P5) = { }
 Preselected(P4) = Preselected(P5) = Empty(P4) = false
 Empty(P5) = true
 Follow(I1) = { "three", "$" }
 Select(P4) = First(P4) = { "*" }
 Select(P5) = First(P5) + Follow(I1) = { "three", "$" }

 First(P6) = { "three" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true
 Follow(three) = { "$" }
 Select(P6) = First(P6) = { "three" }
 Select(P7) = First(P7) + Follow(three) = { "$" }

Legg Experimental [Page 76]

RFC 4911 Encoding Instructions for RXER July 2007

 The intersection of Select(P4) and Select(P5) is empty, as is the
 intersection of Select(P6) and Select(P7); hence, the grammar is
 deterministic, and the type definition is valid. A decoder will now
 assume that an unrecognized element is to be associated with
 extension insertion point I1. It is still free to associate an
 unrecognized attribute with either extension insertion point. If a
 NO-INSERTIONS encoding instruction had been used, then an
 unrecognized attribute could only be associated with extension
 insertion point I1.

B.2. Example 2

 Consider the following type definition:

 SEQUENCE {
 one [GROUP] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 } OPTIONAL
 }

 The associated grammar is:

 P1: S ::= one
 P2: one ::= two
 P3: one ::= I1
 P4: one ::=
 P5: two ::= "two"
 P6: I1 ::= "*" I1
 P7: I1 ::=

 This grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P3) = { "*" }
 First(P4) = { }
 Preselected(P2) = Preselected(P3) = Preselected(P4) = false
 Empty(P2) = false
 Empty(P3) = Empty(P4) = true
 Follow(one) = { "$" }
 Select(P2) = First(P2) = { "two" }
 Select(P3) = First(P3) + Follow(one) = { "*", "$" }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 First(P6) = { "*" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true

Legg Experimental [Page 77]

RFC 4911 Encoding Instructions for RXER July 2007

 Follow(I1) = { "$" }
 Select(P6) = First(P6) = { "*" }
 Select(P7) = First(P7) + Follow(I1) = { "$" }

 The intersection of Select(P3) and Select(P4) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the <two> element is not present, then a decoder cannot
 determine whether the "one" alternative is absent, or present with an
 unknown extension that generates no elements.

 The non-determinism can be resolved with either a
 SINGULAR-INSERTIONS, UNIFORM-INSERTIONS, or MULTIFORM-INSERTIONS
 encoding instruction. The MULTIFORM-INSERTIONS encoding instruction
 is the least restrictive. Consider this revised type definition:

 SEQUENCE {
 one [GROUP] [MULTIFORM-INSERTIONS] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 } OPTIONAL
 }

 The associated grammar is:

 P1: S ::= one
 P2: one ::= two
 P8: one ::= "*" I1
 P4: one ::=
 P5: two ::= "two"
 P6: I1 ::= "*" I1
 P7: I1 ::=

 This grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P8) = { "*" }
 First(P4) = { }
 Preselected(P2) = Preselected(P8) = Preselected(P4) = false
 Empty(P2) = Empty(P8) = false
 Empty(P4) = true
 Follow(one) = { "$" }
 Select(P2) = First(P2) = { "two" }
 Select(P8) = First(P8) = { "*" }
 Select(P4) = First(P4) + Follow(one) = { "$" }

 First(P6) = { "*" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false

Legg Experimental [Page 78]

RFC 4911 Encoding Instructions for RXER July 2007

 Empty(P7) = true
 Follow(I1) = { "$" }
 Select(P6) = First(P6) = { "*" }
 Select(P7) = First(P7) + Follow(I1) = { "$" }

 The intersection of Select(P2) and Select(P8) is empty, as is the
 intersection of Select(P2) and Select(P4), the intersection of
 Select(P8) and Select(P4), and the intersection of Select(P6) and
 Select(P7); hence, the grammar is deterministic, and the type
 definition is valid. A decoder will now assume the "one" alternative
 is present if it sees at least one unrecognized element, and absent
 otherwise.

B.3. Example 3

 Consider the following type definition:

 SEQUENCE {
 one [GROUP] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three [GROUP] CHOICE {
 four UTF8String,
 ... -- Extension insertion point (I2).
 }
 }

 The associated grammar is:

 P1: S ::= one three
 P2: one ::= two
 P3: one ::= I1
 P4: two ::= "two"
 P5: I1 ::= "*" I1
 P6: I1 ::=
 P7: three ::= four
 P8: three ::= I2
 P9: four ::= "four"
 P10: I2 ::= "*" I2
 P11: I2 ::=

 This grammar leads to the following sets and predicates:

 First(P2) = { "two" }
 First(P3) = { "*" }
 Preselected(P2) = Preselected(P3) = Empty(P2) = false
 Empty(P3) = true

Legg Experimental [Page 79]

RFC 4911 Encoding Instructions for RXER July 2007

 Follow(one) = { "four", "*", "$" }
 Select(P2) = First(P2) = { "two" }
 Select(P3) = First(P3) + Follow(one) = { "*", "four", "$" }

 First(P5) = { "*" }
 First(P6) = { }
 Preselected(P5) = Preselected(P6) = Empty(P5) = false
 Empty(P6) = true
 Follow(I1) = { "four", "*", "$" }
 Select(P5) = First(P5) = { "*" }
 Select(P6) = First(P6) + Follow(I1) = { "four", "*", "$" }

 First(P7) = { "four" }
 First(P8) = { "*" }
 Preselected(P7) = Preselected(P8) = Empty(P7) = false
 Empty(P8) = true
 Follow(three) = { "$" }
 Select(P7) = First(P7) = { "four" }
 Select(P8) = First(P8) + Follow(three) = { "*", "$" }

 First(P10) = { "*" }
 First(P11) = { }
 Preselected(P10) = Preselected(P11) = Empty(P10) = false
 Empty(P11) = true
 Follow(I2) = { "$" }
 Select(P10) = First(P10) = { "*" }
 Select(P11) = First(P11) + Follow(I2) = { "$" }

 The intersection of Select(P5) and Select(P6) is not empty; hence,
 the grammar is not deterministic, and the type definition is not
 valid. If the first child element is an unrecognized element, then a
 decoder cannot determine whether to associate it with extension
 insertion point I1, or to associate it with extension insertion point
 I2 by assuming that the "one" component has an unknown extension that
 generates no elements.

 The non-determinism can be resolved with either a SINGULAR-INSERTIONS
 or UNIFORM-INSERTIONS encoding instruction. Consider this revised
 type definition using the SINGULAR-INSERTIONS encoding instruction:

Legg Experimental [Page 80]

RFC 4911 Encoding Instructions for RXER July 2007

 SEQUENCE {
 one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three [GROUP] CHOICE {
 four UTF8String,
 ... -- Extension insertion point (I2).
 }
 }

 The associated grammar is:

 P1: S ::= one three
 P2: one ::= two
 P12: one ::= "*"
 P4: two ::= "two"
 P7: three ::= four
 P8: three ::= I2
 P9: four ::= "four"
 P10: I2 ::= "*" I2
 P11: I2 ::=

 With the addition of the SINGULAR-INSERTIONS encoding instruction,
 the P5 and P6 productions are no longer generated. The grammar leads
 to the following sets and predicates for the P2 and P12 productions:

 First(P2) = { "two" }
 First(P12) = { "*" }
 Preselected(P2) = Preselected(P12) = false
 Empty(P2) = Empty(P12) = false
 Follow(one) = { "four", "*", "$" }
 Select(P2) = First(P2) = { "two" }
 Select(P12) = First(P12) = { "*" }

 The sets for P5 and P6 are no longer generated, and the remaining
 sets are unchanged.

 The intersection of Select(P2) and Select(P12) is empty, as is the
 intersection of Select(P7) and Select(P8) and the intersection of
 Select(P10) and Select(P11); hence, the grammar is deterministic, and
 the type definition is valid. If the first child element is an
 unrecognized element, then a decoder will now assume that it is
 associated with extension insertion point I1. Whatever follows,
 possibly including another unrecognized element, will belong to the
 "three" component.

Legg Experimental [Page 81]

RFC 4911 Encoding Instructions for RXER July 2007

 Now consider the type definition using the UNIFORM-INSERTIONS
 encoding instruction instead:

 SEQUENCE {
 one [GROUP] [UNIFORM-INSERTIONS] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 },
 three [GROUP] CHOICE {
 four UTF8String,
 ... -- Extension insertion point (I2).
 }
 }

 The associated grammar is:

 P1: S ::= one three
 P2: one ::= two
 P13: one ::= "*"
 P14: one ::= "*1" I1
 P4: two ::= "two"
 P15: I1 ::= "*1" I1
 P6: I1 ::=
 P7: three ::= four
 P8: three ::= I2
 P9: four ::= "four"
 P10: I2 ::= "*" I2
 P11: I2 ::=

 This grammar leads to the following sets and predicates for the P2,
 P13, P14, P15, and P6 productions:

 First(P2) = { "two" }
 First(P13) = { "*" }
 First(P14) = { "*1" }
 Preselected(P2) = Preselected(P13) = Preselected(P14) = false
 Empty(P2) = Empty(P13) = Empty(P14) = false
 Follow(one) = { "four", "*", "$" }
 Select(P2) = First(P2) = { "two" }
 Select(P13) = First(P13) = { "*" }
 Select(P14) = First(P14) = { "*1" }

Legg Experimental [Page 82]

RFC 4911 Encoding Instructions for RXER July 2007

 First(P15) = { "*1" }
 First(P6) = { }
 Preselected(P15) = Preselected(P6) = Empty(P15) = false
 Empty(P6) = true
 Follow(I1) = { "four", "*", "$" }
 Select(P15) = First(P15) = { "*1" }
 Select(P6) = First(P6) + Follow(I1) = { "four", "*", "$" }

 The remaining sets are unchanged.

 The intersection of Select(P2) and Select(P13) is empty, as is the
 intersection of Select(P2) and Select(P14), the intersection of
 Select(P13) and Select(P14) and the intersection of Select(P15) and
 Select(P6); hence, the grammar is deterministic, and the type
 definition is valid. If the first child element is an unrecognized
 element, then a decoder will now assume that it and every subsequent
 unrecognized element with the same name are associated with I1.
 Whatever follows, possibly including another unrecognized element
 with a different name, will belong to the "three" component.

 A consequence of using the UNIFORM-INSERTIONS encoding instruction is
 that any future extension to the "three" component will be required
 to generate elements with names that are different from the names of
 the elements generated by the "one" component. With the
 SINGULAR-INSERTIONS encoding instruction, extensions to the "three"
 component are permitted to generate elements with names that are the
 same as the names of the elements generated by the "one" component.

B.4. Example 4

 Consider the following type definition:

 SEQUENCE OF one [GROUP] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 }

 The associated grammar is:

 P1: S ::= one S
 P2: S ::=
 P3: one ::= two
 P4: one ::= I1
 P5: two ::= "two"
 P6: I1 ::= "*" I1
 P7: I1 ::=

Legg Experimental [Page 83]

RFC 4911 Encoding Instructions for RXER July 2007

 This grammar leads to the following sets and predicates:

 First(P1) = { "two", "*" }
 First(P2) = { }
 Preselected(P1) = Preselected(P2) = false
 Empty(P1) = Empty(P2) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) + Follow(S) = { "two", "*", "$" }
 Select(P2) = First(P2) + Follow(S) = { "$" }

 First(P3) = { "two" }
 First(P4) = { "*" }
 Preselected(P3) = Preselected(P4) = Empty(P3) = false
 Empty(P4) = true
 Follow(one) = { "two", "*", "$" }
 Select(P3) = First(P3) = { "two" }
 Select(P4) = First(P4) + Follow(one) = { "*", "two", "$" }

 First(P6) = { "*" }
 First(P7) = { }
 Preselected(P6) = Preselected(P7) = Empty(P6) = false
 Empty(P7) = true
 Follow(I1) = { "two", "*", "$" }
 Select(P6) = First(P6) = { "*" }
 Select(P7) = First(P7) + Follow(I1) = { "two", "*", "$" }

 The intersection of Select(P1) and Select(P2) is not empty, as is the
 intersection of Select(P3) and Select(P4) and the intersection of
 Select(P6) and Select(P7); hence, the grammar is not deterministic,
 and the type definition is not valid. If a decoder encounters two or
 more unrecognized elements in a row, then it cannot determine whether
 this represents one instance or more than one instance of the "one"
 component. Even without unrecognized elements, there is still a
 problem that an encoding could contain an indeterminate number of
 "one" components using an extension that generates no elements.

 The non-determinism cannot be resolved with a UNIFORM-INSERTIONS
 encoding instruction. Consider this revised type definition using
 the UNIFORM-INSERTIONS encoding instruction:

 SEQUENCE OF one [GROUP] [UNIFORM-INSERTIONS] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 }

Legg Experimental [Page 84]

RFC 4911 Encoding Instructions for RXER July 2007

 The associated grammar is:

 P1: S ::= one S
 P2: S ::=
 P3: one ::= two
 P8: one ::= "*"
 P9: one ::= "*1" I1
 P5: two ::= "two"
 P10: I1 ::= "*1" I1
 P7: I1 ::=

 This grammar leads to the following sets and predicates:

 First(P1) = { "two", "*", "*1" }
 First(P2) = { }
 Preselected(P1) = Preselected(P2) = Empty(P1) = false
 Empty(P2) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) = { "two", "*", "*1" }
 Select(P2) = First(P2) + Follow(S) = { "$" }

 First(P3) = { "two" }
 First(P8) = { "*" }
 First(P9) = { "*1" }
 Preselected(P3) = Preselected(P8) = Preselected(P9) = false
 Empty(P3) = Empty(P8) = Empty(P9) = false
 Follow(one) = { "two", "*", "*1", "$" }
 Select(P3) = First(P3) = { "two" }
 Select(P8) = First(P8) = { "*" }
 Select(P9) = First(P9) = { "*1" }

 First(P10) = { "*1" }
 First(P7) = { }
 Preselected(P10) = Preselected(P7) = Empty(P10) = false
 Empty(P7) = true
 Follow(I1) = { "two", "*", "*1", "$" }
 Select(P10) = First(P10) = { "*1" }
 Select(P7) = First(P7) + Follow(I1) = { "two", "*", "*1", "$" }

 The intersection of Select(P1) and Select(P2) is now empty, but the
 intersection of Select(P10) and Select(P7) is not; hence, the grammar
 is not deterministic, and the type definition is not valid. The
 problem of an indeterminate number of "one" components from an
 extension that generates no elements has been solved. However, if a
 decoder encounters a series of elements with the same name, it cannot
 determine whether this represents one instance or more than one
 instance of the "one" component.

Legg Experimental [Page 85]

RFC 4911 Encoding Instructions for RXER July 2007

 The non-determinism can be fully resolved with a SINGULAR-INSERTIONS
 encoding instruction. Consider this revised type definition:

 SEQUENCE OF one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
 two UTF8String,
 ... -- Extension insertion point (I1).
 }

 The associated grammar is:

 P1: S ::= one S
 P2: S ::=
 P3: one ::= two
 P8: one ::= "*"
 P5: two ::= "two"

 This grammar leads to the following sets and predicates:

 First(P1) = { "two", "*" }
 First(P2) = { }
 Preselected(P1) = Preselected(P2) = Empty(P1) = false
 Empty(P2) = true
 Follow(S) = { "$" }
 Select(P1) = First(P1) = { "two", "*" }
 Select(P2) = First(P2) + Follow(S) = { "$" }

 First(P3) = { "two" }
 First(P8) = { "*" }
 Preselected(P3) = Preselected(P8) = false
 Empty(P3) = Empty(P8) = false
 Follow(one) = { "two", "*", "$" }
 Select(P3) = First(P3) = { "two" }
 Select(P8) = First(P8) = { "*" }

 The intersection of Select(P1) and Select(P2) is empty, as is the
 intersection of Select(P3) and Select(P8); hence, the grammar is
 deterministic, and the type definition is valid. A decoder now knows
 that every extension to the "one" component will generate a single
 element, so the correct number of "one" components will be decoded.

Legg Experimental [Page 86]

RFC 4911 Encoding Instructions for RXER July 2007

Appendix C. Extension and Versioning Examples

 This appendix is non-normative.

C.1. Valid Extensions for Insertion Encoding Instructions

 The first example shows extensions that satisfy the HOLLOW-INSERTIONS
 encoding instruction.

 [HOLLOW-INSERTIONS] CHOICE {
 one BOOLEAN,
 ...,
 two [ATTRIBUTE] INTEGER,
 three [GROUP] SEQUENCE {
 four [ATTRIBUTE] UTF8String,
 five [ATTRIBUTE] INTEGER OPTIONAL,
 ...
 },
 six [GROUP] CHOICE {
 seven [ATTRIBUTE] BOOLEAN,
 eight [ATTRIBUTE] INTEGER
 }
 }

 The "two" and "six" components generate only attributes.

 The "three" component in its current form does not generate elements.
 Any extension to the "three" component will need to do likewise to
 avoid breaking forward compatibility.

 The second example shows extensions that satisfy the
 SINGULAR-INSERTIONS encoding instruction.

 [SINGULAR-INSERTIONS] CHOICE {
 one BOOLEAN,
 ...,
 two INTEGER,
 three [GROUP] SEQUENCE {
 four [ATTRIBUTE] UTF8String,
 five INTEGER
 },
 six [GROUP] CHOICE {
 seven BOOLEAN,
 eight INTEGER
 }
 }

Legg Experimental [Page 87]

RFC 4911 Encoding Instructions for RXER July 2007

 The "two" component will always generate a single <two> element.

 The "three" component will always generate a single <five> element.
 It will also generate a "four" attribute, but any number of
 attributes is allowed by the SINGULAR-INSERTIONS encoding
 instruction.

 The "six" component will either generate a single <seven> element or
 a single <eight> element. Either case will satisfy the requirement
 that there will be a single element in any given encoding of the
 extension.

 The third example shows extensions that satisfy the
 UNIFORM-INSERTIONS encoding instruction.

 [UNIFORM-INSERTIONS] CHOICE {
 one BOOLEAN,
 ...,
 two INTEGER,
 three [GROUP] SEQUENCE SIZE(1..MAX) OF four INTEGER,
 five [GROUP] SEQUENCE {
 six [ATTRIBUTE] UTF8String OPTIONAL,
 seven INTEGER
 },
 eight [GROUP] CHOICE {
 nine BOOLEAN,
 ten [GROUP] SEQUENCE SIZE(1..MAX) OF eleven INTEGER
 }
 }

 The "two" component will always generate a single <two> element.

 The "three" component will always generate one or more <four>
 elements.

 The "five" component will always generate a single <seven> element.
 It may also generate a "six" attribute, but any number of attributes
 is allowed by the UNIFORM-INSERTIONS encoding instruction.

 The "eight" component will either generate a single <nine> element or
 one or more <eleven> elements. Either case will satisfy the
 requirement that there must be one or more elements with the same
 name in any given encoding of the extension.

Legg Experimental [Page 88]

RFC 4911 Encoding Instructions for RXER July 2007

C.2. Versioning Example

 Making extensions that are not forward compatible is permitted
 provided that the incompatibility is signalled with a version
 indicator attribute.

 Suppose that version 1.0 of a specification contains the following
 type definition:

 MyMessageType ::= SEQUENCE {
 version [ATTRIBUTE] [VERSION-INDICATOR]
 UTF8String ("1.0", ...) DEFAULT "1.0",
 one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
 two BOOLEAN,
 ...
 },
 ...
 }

 An attribute is to be added to the CHOICE for version 1.1. This
 change is not forward compatible since it does not satisfy the
 SINGULAR-INSERTIONS encoding instruction. Therefore, the version
 indicator attribute must be updated at the same time (or added if it
 wasn’t already present). This results in the following new type
 definition for version 1.1:

 MyMessageType ::= SEQUENCE {
 version [ATTRIBUTE] [VERSION-INDICATOR]
 UTF8String ("1.0", ..., "1.1") DEFAULT "1.0",
 one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
 two BOOLEAN,
 ...,
 three [ATTRIBUTE] INTEGER -- Added in Version 1.1
 },
 ...
 }

 If a version 1.1 conformant application hasn’t used the version 1.1
 extension in a value of MyMessageType, then it is allowed to set the
 value of the version attribute to "1.0".

 A pair of elements is added to the CHOICE for version 1.2. Again the
 change does not satisfy the SINGULAR-INSERTIONS encoding instruction.
 The type definition for version 1.2 is:

Legg Experimental [Page 89]

RFC 4911 Encoding Instructions for RXER July 2007

 MyMessageType ::= SEQUENCE {
 version [ATTRIBUTE] [VERSION-INDICATOR]
 UTF8String ("1.0", ..., "1.1" | "1.2")
 DEFAULT "1.0",
 one [GROUP] [SINGULAR-INSERTIONS] CHOICE {
 two BOOLEAN,
 ...,
 three [ATTRIBUTE] INTEGER, -- Added in Version 1.1
 four [GROUP] SEQUENCE {
 five UTF8String,
 six GeneralizedTime
 } -- Added in version 1.2
 },
 ...
 }

 If a version 1.2 conformant application hasn’t used the version 1.2
 extension in a value of MyMessageType, then it is allowed to set the
 value of the version attribute to "1.1". If it hasn’t used either of
 the extensions, then it is allowed to set the value of the version
 attribute to "1.0".

Author’s Address

 Dr. Steven Legg
 eB2Bcom
 Suite 3, Woodhouse Corporate Centre
 935 Station Street
 Box Hill North, Victoria 3129
 AUSTRALIA

 Phone: +61 3 9896 7830
 Fax: +61 3 9896 7801
 EMail: steven.legg@eb2bcom.com

Legg Experimental [Page 90]

RFC 4911 Encoding Instructions for RXER July 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Legg Experimental [Page 91]

