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Status of This Memo

   This memo provides information for the Internet community.  It does
   not specify an Internet standard of any kind.  Distribution of this
   memo is unlimited.

Copyright Notice

   Copyright (C) The IETF Trust (2006).

Abstract

   This memo offers non-normative implementation guidance for the Real-
   time Protocol (RTP) MIDI (Musical Instrument Digital Interface)
   payload format.  The memo presents its advice in the context of a
   network musical performance application.  In this application two
   musicians, located in different physical locations, interact over a
   network to perform as they would if located in the same room.
   Underlying the performances are RTP MIDI sessions over unicast UDP.
   Algorithms for sending and receiving recovery journals (the
   resiliency structure for the payload format) are described in detail.
   Although the memo focuses on network musical performance, the
   presented implementation advice is relevant to other RTP MIDI
   applications.

Lazzaro & Wawrzynek          Informational                      [Page 1]



RFC 4696          An Implementation Guide for RTP MIDI     November 2006

Table of Contents

   1. Introduction ....................................................2
   2. Starting the Session ............................................3
   3. Session Management: Session Housekeeping ........................6
   4. Sending Streams: General Considerations .........................7
      4.1. Queuing and Coding Incoming MIDI Data .....................11
      4.2. Sending Packets with Empty MIDI Lists .....................12
      4.3. Congestion Control and Bandwidth Management ...............13
   5. Sending Streams: The Recovery Journal ..........................14
      5.1. Initializing the RJSS .....................................16
      5.2. Traversing the RJSS .......................................19
      5.3. Updating the RJSS .........................................19
      5.4. Trimming the RJSS .........................................20
      5.5. Implementation Notes ......................................21
   6. Receiving Streams: General Considerations ......................21
      6.1 The NMP Receiver Design ....................................22
      6.2 High-Jitter Networks, Local Area Networks ..................24
   7. Receiving Streams: The Recovery Journal ........................25
      7.1. Chapter W: MIDI Pitch Wheel (0xE) .........................30
      7.2. Chapter N: MIDI NoteOn (0x8) and NoteOff (0x9) ............30
      7.3. Chapter C: MIDI Control Change (0xB) ......................32
      7.4. Chapter P: MIDI Program Change (0xC) ......................34
   8. Security Considerations ........................................35
   9. IANA Considerations ............................................35
   10. Acknowledgements ..............................................35
   11. References ....................................................35
      11.1. Normative References .....................................35
      11.2. Informative References ...................................36

1.  Introduction

   [RFC4695] normatively defines a Real-time Transport Protocol (RTP,
   [RFC3550]) payload format for the MIDI (Musical Instrument Digital
   Interface) command language [MIDI], for use under any applicable RTP
   profile, such as the Audio/Visual Profile (AVP, [RFC3551]).

   However, [RFC4695] does not define algorithms for sending and
   receiving MIDI streams.  Implementors are free to use any sending or
   receiving algorithm that conforms to the normative text in [RFC4695],
   [RFC3550], [RFC3551], and [MIDI].

   In this memo, we offer implementation guidance on sending and
   receiving MIDI RTP streams.  Unlike [RFC4695], this memo is not
   normative.
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   RTP is a mature protocol, and excellent RTP reference materials are
   available [RTPBOOK].  This memo aims to complement the existing
   literature by focusing on issues that are specific to the MIDI
   payload format.

   The memo focuses on one application: two-party network musical
   performance over wide-area networks, following the interoperability
   guidelines in Appendix C.7.2 of [RFC4695].  Underlying the
   performances are RTP MIDI sessions over unicast UDP transport.
   Resiliency is provided by the recovery journal system [RFC4695].  The
   application also uses the RTP Control Protocol (RTCP, [RFC3550]).

   The application targets a network with a particular set of
   characteristics: low nominal jitter, low packet loss, and occasional
   outlier packets that arrive very late.  However, in Section 6.2 of
   this memo, we discuss adapting the application to other network
   environments.

   As defined in [NMP], a network musical performance occurs when
   musicians located at different physical locations interact over a
   network to perform as they would if located in the same room.

   Sections 2-3 of this memo describe session startup and maintenance.
   Sections 4-5 cover sending MIDI streams, and Sections 6-7 cover
   receiving MIDI streams.

2.  Starting the Session

   In this section, we describe how the application starts a two-player
   session.  We assume that the two parties have agreed on a session
   configuration, embodied by a pair of Session Description Protocol
   (SDP, [RFC4566]) session descriptions.

   One session description (Figure 1) defines how the first party wishes
   to receive its stream.  The other session description (Figure 2)
   defines how the second party wishes to receive its stream.

   The session description in Figure 1 codes that the first party
   intends to receive a MIDI stream on IP4 number 192.0.2.94 (coded in
   the c= line) at UDP port 16112 (coded in the m= line).  Implicit in
   the SDP m= line syntax [RFC4566] is that the first party also intends
   to receive an RTCP stream on 192.0.2.94 at UDP port 16113 (16112 +
   1).  The receiver expects that the PT field of each RTP header in the
   received stream will be set to 96 (coded in the m= line).

   Likewise, the session description in Figure 2 codes that the second
   party intends to receive a MIDI stream on IP4 number 192.0.2.105 at
   UDP port 5004 and intends to receive an RTCP stream on 192.0.2.105 at
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   UDP port 5005 (5004 + 1).  The second party expects that the PT RTP
   header field of received stream will be set to 101.

v=0
o=first 2520644554 2838152170 IN IP4 first.example.net
s=Example
t=0 0
c=IN IP4 192.0.2.94
m=audio 16112 RTP/AVP 96
b=AS:20
b=RS:0
b=RR:400
a=rtpmap:96 mpeg4-generic/44100
a=fmtp:96 streamtype=5; mode=rtp-midi; config=""; profile-level-id=12;
cm_unused=ABFGHJKMQTVXYZ; cm_unused=C120-127; ch_never=ADEFMQTVX;
tsmode=buffer; linerate=320000; octpos=last; mperiod=44; rtp_ptime=0;
rtp_maxptime=0; guardtime=44100; render=synthetic; rinit="audio/asc";
url="http://example.net/sa.asc";
cid="xjflsoeiurvpa09itnvlduihgnvet98pa3w9utnuighbuk"

   (The a=fmtp line has been wrapped to fit the page to accommodate
    memo formatting restrictions; it constitutes a single line in SDP.)

            Figure 1. Session description for first participant

v=0
o=second 2520644554 2838152170 IN IP4 second.example.net
s=Example
t=0 0
c=IN IP4 192.0.2.105
m=audio 5004 RTP/AVP 101
b=AS:20
b=RS:0
b=RR:400
a=rtpmap:101 mpeg4-generic/44100
a=fmtp:101 streamtype=5; mode=rtp-midi; config=""; profile-level-id=12;
cm_unused=ABFGHJKMQTVXYZ; cm_unused=C120-127; ch_never=ADEFMQTVX;
tsmode=buffer; linerate=320000;octpos=last;mperiod=44; guardtime=44100;
rtp_ptime=0; rtp_maxptime=0; render=synthetic; rinit="audio/asc";
url="http://example.net/sa.asc";
cid="xjflsoeiurvpa09itnvlduihgnvet98pa3w9utnuighbuk"

   (The a=fmtp line has been wrapped to fit the page to accommodate
    memo formatting restrictions; it constitutes a single line in SDP.)

          Figure 2. Session description for second participant
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   The session descriptions use the mpeg4-generic media type (coded in
   the a=rtpmap line) to specify the use of the MPEG 4 Structured Audio
   renderer [MPEGSA].  The session descriptions also use parameters to
   customize the stream (Appendix C of [RFC4695]).  The parameter values
   are identical for both parties, yielding identical rendering
   environments for the two client hosts.

   The bandwidth (b=) AS parameter [RFC4566] [RFC3550] indicates that
   the total RTP session bandwidth is 20 kbs.  This value assumes that
   the two players send 10 kbs streams concurrently.  To derive the 10
   kbs value, we begin with the analysis of RTP MIDI payload bandwidth
   in Appendix A.4 of [NMP] and add in RTP and IP4 packet overhead and a
   small safety factor.

   The bandwidth RR parameter [RFC3556] indicates that the shared RTCP
   session bandwidth for the two parties is 400 bps.  We set the
   bandwidth SR parameter to 0 bps, to signal that sending parties and
   non-sending parties equally share the 400 bps of RTCP bandwidth.
   (Note that in this particular example, the guardtime parameter value
   of 44100 ensures that both parties are sending for the duration of
   the session.)  The 400 bps RTCP bandwidth value supports one RTCP
   packet per 5 seconds from each party, containing a Sender Report and
   CNAME information [RFC3550].

   We now show an example of code that implements the actions the
   parties take during the session.  The code is written in C and uses
   the standard network programming techniques described in [STEVENS].
   We show code for the first party (the second party takes a symmetric
   set of actions).

   Figure 3 shows how the first party initializes a pair of socket
   descriptors (rtp_fd and rtcp_fd) to send and receive UDP packets.
   After the code in Figure 3 runs, the first party may check for new
   RTP or RTCP packets by calling recv() on rtp_fd or rtcp_fd.

   Applications may use recv() to receive UDP packets on a socket using
   one of two general methods: "blocking" or "non-blocking".

   A call to recv() on a blocking UDP socket puts the calling thread to
   sleep until a new packet arrives.

   A call to recv() on a non-blocking socket acts to poll the device:
   the recv() call returns immediately, with a return value that
   indicates the polling result.  In this case, a positive return value
   signals the size of a new received packet, and a negative return
   value (coupled with an errno value of EAGAIN) indicates that no new
   packet was available.
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   The choice of blocking or non-blocking sockets is a critical
   application choice.  Blocking sockets offer the lowest potential
   latency (as the OS wakes the caller as soon as a packet has arrived).
   However, audio applications that use blocking sockets must adopt a
   multi-threaded program architecture, so that audio samples may be
   generated on a "rendering thread" while the "network thread" sleeps,
   awaiting the next packet.  The architecture must also support a
   thread communication mechanism, so that the network thread has a
   mechanism to send MIDI commands the rendering thread.

   In contrast, audio applications that use non-blocking sockets may be
   coded using a single thread, that alternates between audio sample
   generation and network polling.  This architecture trades off
   increased network latency (as a packet may arrive between polls) for
   a simpler program architecture.  For simplicity, our example uses
   non-blocking sockets and presumes a single run loop.  Figure 4 shows
   how the example configures its sockets to be non-blocking.

   Figure 5 shows how to use recv() to check a non-blocking socket for
   new packets.

   The first party also uses rtp_fd and rtcp_fd to send RTP and RTCP
   packets to the second party.  In Figure 6, we show how to initialize
   socket structures that address the second party.  In Figure 7, we
   show how to use one of these structures in a sendto() call to send an
   RTP packet to the second party.

   Note that the code shown in Figures 3-7 assumes a clear network path
   between the participants.  The code may not work if firewalls or
   Network Address Translation (NAT) devices are present in the network
   path.

3.  Session Management: Session Housekeeping

   After the two-party interactive session is set up, the parties begin
   to send and receive RTP packets.  In Sections 4-7, we discuss RTP
   MIDI sending and receiving algorithms.  In this section, we describe
   session "housekeeping" tasks that the participants also perform.

   One housekeeping task is the maintenance of the 32-bit
   Synchronization Source (SSRC) value that uniquely identifies each
   party.  Section 8 of [RFC3550] describes SSRC issues in detail, as
   does Section 2.1 in [RFC4695].  Another housekeeping task is the
   sending and receiving of RTCP.  Section 6 of [RFC3550] describes RTCP
   in detail.
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   Another housekeeping task concerns security.  As detailed in the
   Security Considerations section of [RFC4695], per-packet
   authentication is strongly recommended for use with MIDI streams,
   because the acceptance of rogue packets may lead to the execution of
   arbitrary MIDI commands.

   A final housekeeping task concerns the termination of the session.
   In our two-party example, the session terminates upon the exit of one
   of the participants.  A clean termination may require active effort
   by a receiver, as a MIDI stream stopped at an arbitrary point may
   cause stuck notes and other indefinite artifacts in the MIDI
   renderer.

   The exit of a party may be signalled in several ways.  Session
   management tools may offer a reliable signal for termination (such as
   the SIP BYE method [RFC3261]).  The (unreliable) RTCP BYE packet
   [RFC3550] may also signal the exit of a party.  Receivers may also
   sense the lack of RTCP activity and timeout a party or may use
   transport methods to detect an exit.

4.  Sending Streams: General Considerations

   In this section, we discuss sender implementation issues.

   The sender is a real-time data-driven entity.  On an ongoing basis,
   the sender checks to see if the local player has generated new MIDI
   data.  At any time, the sender may transmit a new RTP packet to the
   remote player for the reasons described below:

   1. New MIDI data has been generated by the local player, and the
      sender decides that it is time to issue a packet coding the data.

   2. The local player has not generated new MIDI data, but the sender
      decides that too much time has elapsed since the last RTP packet
      transmission.  The sender transmits a packet in order to relay
      updated header and recovery journal data.

   In both cases, the sender generates a packet that consists of an RTP
   header, a MIDI command section, and a recovery journal.  In the first
   case, the MIDI list of the MIDI command section codes the new MIDI
   data.  In the second case, the MIDI list is empty.
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   #include <sys/types.h>
   #include <sys/socket.h>
   #include <netinet/in.h>

     int rtp_fd, rtcp_fd;       /* socket descriptors */
     struct sockaddr_in addr;   /* for bind address   */

     /*********************************/
     /* create the socket descriptors */
     /*********************************/

     if ((rtp_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
       ERROR_RETURN("Couldn’t create Internet RTP socket");

     if ((rtcp_fd = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
       ERROR_RETURN("Couldn’t create Internet RTCP socket");

     /**********************************/
     /* bind the RTP socket descriptor */
     /**********************************/

     memset(&(addr.sin_zero), 0, 8);
     addr.sin_family = AF_INET;
     addr.sin_addr.s_addr = htonl(INADDR_ANY);
     addr.sin_port = htons(16112); /* port 16112, from SDP */

     if (bind(rtp_fd, (struct sockaddr *)&addr,
              sizeof(struct sockaddr)) < 0)
        ERROR_RETURN("Couldn’t bind Internet RTP socket");

     /***********************************/
     /* bind the RTCP socket descriptor */
     /***********************************/

     memset(&(addr.sin_zero), 0, 8);
     addr.sin_family = AF_INET;
     addr.sin_addr.s_addr = htonl(INADDR_ANY);
     addr.sin_port = htons(16113); /* port 16113, from SDP */

     if (bind(rtcp_fd, (struct sockaddr *)&addr,
              sizeof(struct sockaddr)) < 0)
         ERROR_RETURN("Couldn’t bind Internet RTCP socket");

           Figure 3. Setup code for listening for RTP/RTCP packets
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   #include <unistd.h>
   #include <fcntl.h>

     /***************************/
     /* set non-blocking status */
     /***************************/

     if (fcntl(rtp_fd, F_SETFL, O_NONBLOCK))
       ERROR_RETURN("Couldn’t unblock Internet RTP socket");

     if (fcntl(rtcp_fd, F_SETFL, O_NONBLOCK))
       ERROR_RETURN("Couldn’t unblock Internet RTCP socket");

       Figure 4. Code to set socket descriptors to be non-blocking

   #include <errno.h>
   #define UDPMAXSIZE 1472     /* based on Ethernet MTU of 1500 */

   unsigned char packet[UDPMAXSIZE+1];
   int len, normal;

    while ((len = recv(rtp_fd, packet, UDPMAXSIZE + 1, 0)) > 0)
     {
       /*  process packet[].  If (len == UDPMAXSIZE + 1), recv()
        *  may be returning a truncated packet -- process with care
        */
     }

     /* line below sets "normal" to 1 if the recv() return */
     /*   status indicates no packets are left to process  */

    normal = (len < 0) && (errno == EAGAIN);

    if (!normal)
     {
       /*
        *  recv() return status indicates an empty UDP payload
        *  (len == 0) or an error condition (coded by (len < 0)
        *  and (errno != EAGAIN)).  Examine len and errno, and
        *  take appropriate recovery action.
        */
     }

           Figure 5. Code to check rtp_fd for new RTP packets
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   #include <arpa/inet.h>
   #include <netinet/in.h>

   struct sockaddr_in * rtp_addr;      /* RTP destination IP/port  */
   struct sockaddr_in * rtcp_addr;     /* RTCP destination IP/port */

     /* set RTP address, as coded in Figure 2’s SDP */

     rtp_addr = calloc(1, sizeof(struct sockaddr_in));
     rtp_addr->sin_family = AF_INET;
     rtp_addr->sin_port = htons(5004);
     rtp_addr->sin_addr.s_addr = inet_addr("192.0.2.105");

     /* set RTCP address, as coded in Figure 2’s SDP */

     rtcp_addr = calloc(1, sizeof(struct sockaddr_in));
     rtcp_addr->sin_family = AF_INET;
     rtcp_addr->sin_port = htons(5005);   /* 5004 + 1 */
     rtcp_addr->sin_addr.s_addr = rtp_addr->sin_addr.s_addr;

       Figure 6. Initializing destination addresses for RTP and RTCP

   unsigned char packet[UDPMAXSIZE];  /* RTP packet to send   */
   int size;                          /* length of RTP packet */

     /* first fill packet[] and set size ... then: */

     if (sendto(rtp_fd, packet, size, 0, rtp_addr,
                sizeof(struct sockaddr))  == -1)
       {
         /*
          * try again later if errno == EAGAIN or EINTR
          *
          * other errno values --> an operational error
          */
       }

              Figure 7. Using sendto() to send an RTP packet

   Figure 8 shows the 5 steps a sender takes to issue a packet.  This
   algorithm corresponds to the code fragment for sending RTP packets
   shown in Figure 7 of Section 2.  Steps 1, 2, and 3 occur before the
   sendto() call in the code fragment.  Step 4 corresponds to the
   sendto() call itself.  Step 5 may occur once Step 3 completes.
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   The algorithm for Sending a Packet is as follows:

   1. Generate the RTP header for the new packet.  See Section 2.1 of
      [RFC4695] for details.

   2. Generate the MIDI command section for the new packet.  See Section
      3 of [RFC4695] for details.

   3. Generate the recovery journal for the new packet.  We discuss this
      process in Section 5.2.  The generation algorithm examines the
      Recovery Journal Sending Structure (RJSS), a stateful coding of a
      history of the stream.

   4. Send the new packet to the receiver.

   5. Update the RJSS to include the data coded in the MIDI command
      section of the packet sent in step 4.  We discuss the update
      procedure in Section 5.3.

             Figure 8. A 5 step algorithm for sending a packet

   In the sections that follow, we discuss specific sender
   implementation issues in detail.

4.1.  Queuing and Coding Incoming MIDI Data

   Simple senders transmit a new packet as soon as the local player
   generates a complete MIDI command.  The system described in [NMP]
   uses this algorithm.  This algorithm minimizes the sender queuing
   latency, as the sender never delays the transmission of a new MIDI
   command.

   In a relative sense, this algorithm uses bandwidth inefficiently, as
   it does not amortize the overhead of a packet over several commands.
   This inefficiency may be acceptable for sparse MIDI streams (see
   Appendix A.4 of [NMP]).  More sophisticated sending algorithms
   [GRAME] improve efficiency by coding small groups of commands into a
   single packet, at the expense of increasing the sender queuing
   latency.

   Senders assign a timestamp value to each command issued by the local
   player (Appendix C.3 of [RFC4695]).  Senders may code the timestamp
   value of the first MIDI list command in two ways.  The most efficient
   method is to set the RTP timestamp of the packet to the timestamp
   value of the first command.  In this method, the Z bit of the MIDI
   command section header (Figure 2 of [RFC4695]) is set to 0, and the
   RTP timestamps increment at a non-uniform rate.
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   However, in some applications, senders may wish to generate a stream
   whose RTP timestamps increment at a uniform rate.  To do so, senders
   may use the Delta Time MIDI list field to code a timestamp for the
   first command in the list.  In this case, the Z bit of the MIDI
   command section header is set to 1.

   Senders should strive to maintain a constant relationship between the
   RTP packet timestamp and the packet sending time: if two packets have
   RTP timestamps that differ by 1 second, the second packet should be
   sent 1 second after the first packet.  To the receiver, variance in
   this relationship is indistinguishable from network jitter.  Latency
   issues are discussed in detail in Section 6.

   Senders may alter the running status coding of the first command in
   the MIDI list, in order to comply with the coding rules defined in
   Section 3.2 of [RFC4695].  The P header bit (Figure 2 of [RFC4695])
   codes this alteration of the source command stream.

4.2.  Sending Packets with Empty MIDI Lists

   During a session, musicians might refrain from generating MIDI data
   for extended periods of time (seconds or even minutes).  If an RTP
   stream followed the dynamics of a silent MIDI source and stopped
   sending RTP packets, system behavior might be degraded in the
   following ways:

   o  The receiver’s model of network performance may fall out of date.

   o  Network middleboxes (such as Network Address Translators) may
      "time-out" the silent stream and drop the port and IP association
      state.

   o  If the session does not use RTCP, receivers may misinterpret the
      silent stream as a dropped network connection.

   Senders avoid these problems by sending "keep-alive" RTP packets
   during periods of network inactivity.  Keep-alive packets have empty
   MIDI lists.

   Session participants may specify the frequency of keep-alive packets
   during session configuration with the MIME parameter "guardtime"
   (Appendix C.4.2 of [RFC4695]).  The session descriptions shown in
   Figures 1-2 use guardtime to specify a keep-alive sending interval of
   1 second.

   Senders may also send empty packets to improve the performance of the
   recovery journal system.  As we describe in Section 6, the recovery
   process begins when a receiver detects a break in the RTP sequence
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   number pattern of the stream.  The receiver uses the recovery journal
   of the break packet to guide corrective rendering actions, such as
   ending stuck notes and updating out-of-date controller values.

   Consider the situation where the local player produces a MIDI NoteOff
   command (which the sender promptly transmits in a packet) but then 5
   seconds pass before the player produces another MIDI command (which
   the sender transmits in a second packet).  If the packet coding the
   NoteOff is lost, the receiver is not aware of the packet loss
   incident for 5 seconds, and the rendered MIDI performance contains a
   note that sounds for 5 seconds too long.

   To handle this situation, senders may transmit empty packets to
   "guard" the stream during silent sections.  The guard packet
   algorithm defined in Section 7.3 of [NMP], as applied to the
   situation described above, sends a guard packet after 100 ms of
   player inactivity, and sends a second guard packet 100 ms later.
   Subsequent guard packets are sent with an exponential backoff, with a
   limiting period of 1 second (set by the "guardtime" parameter in
   Figures 1-2).  The algorithm terminates once MIDI activity resumes,
   or once RTCP receiver reports indicate that the receiver is up to
   date.

   The perceptual quality of guard packet-sending algorithms is a
   quality of implementation issue for RTP MIDI applications.
   Sophisticated implementations may tailor the guard packet sending
   rate to the nature of the MIDI commands recently sent in the stream,
   to minimize the perceptual impact of moderate packet loss.

   As an example of this sort of specialization, the guard packet
   algorithm described in [NMP] protects against the transient artifacts
   that occur when NoteOn commands are lost.  The algorithm sends a
   guard packet 1 ms after every packet whose MIDI list contains a
   NoteOn command.  The Y bit in Chapter N note logs (Appendix A.6 of
   [RFC4695]) supports this use of guard packets.

   Congestion control and bandwidth management are key issues in guard
   packet algorithms.  We discuss these issues in the next section.

4.3.  Congestion Control and Bandwidth Management

   The congestion control section of [RFC4695] discusses the importance
   of congestion control for RTP MIDI streams and references the
   normative text in [RFC3550] and [RFC3551] that concerns congestion
   control.  To comply with the requirements described in those
   normative documents, RTP MIDI senders may use several methods to
   control the sending rate:
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   o  As described in Section 4.1, senders may pack several MIDI
      commands into a single packet, thereby reducing stream bandwidth
      (at the expense of increasing sender queuing latency).

   o  Guard packet algorithms (Section 4.2) may be designed in a
      parametric way, so that the tradeoff between artifact reduction
      and stream bandwidth may be tuned dynamically.

   o  The recovery journal size may be reduced by adapting the
      techniques described in Section 5 of this memo.  Note that in all
      cases, the recovery journal sender must conform to the normative
      text in Section 4 of [RFC4695].

   o  The incoming MIDI stream may be modified to reduce the number of
      MIDI commands without significantly altering the performance.
      Lossy "MIDI filtering" algorithms are well developed in the MIDI
      community and may be directly applied to RTP MIDI rate management.

   RTP MIDI senders incorporate these rate control methods into feedback
   systems to implement congestion control and bandwidth management.
   Sections 10 and 6.4.4 of [RFC3550] and Section 2 in [RFC3551]
   describe feedback systems for congestion control in RTP, and Section
   6 of [RFC4566] describes bandwidth management in media sessions.

5.  Sending Streams: The Recovery Journal

   In this section, we describe how senders implement the recovery
   journal system.  The implementation we describe uses the default
   "closed-loop" recovery journal semantics (Appendix C.2.2.2 of
   [RFC4695]).

   We begin by describing the Recovery Journal Sending Structure (RJSS).
   Senders use the RJSS to generate the recovery journal section for RTP
   MIDI packets.

   The RJSS is a hierarchical representation of the checkpoint history
   of the stream.  The checkpoint history holds the MIDI commands that
   are at risk to packet loss (Appendix A.1 of [RFC4695] precisely
   defines the checkpoint history).  The layout of the RJSS mirrors the
   hierarchical structure of the recovery journal bitfields.

   Figure 9 shows an RJSS implementation for a simple sender.  The leaf
   level of the RJSS hierarchy (the jsend_chapter structures)
   corresponds to channel chapters (Appendices A.2-9 in [RFC4695]).  The
   second level of the hierarchy (jsend_channel) corresponds to the
   channel journal header (Figure 9 in [RFC4695]).  The top level of the
   hierarchy (jsend_journal) corresponds to the recovery journal header
   (Figure 8 in [RFC4695]).
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   Each RJSS data structure may code several items:

   1. The current contents of the recovery journal bitfield associated
      with the RJSS structure (jheader[], cheader[], or a chapter
      bitfield).

   2. A seqnum variable.  Seqnum codes the extended RTP sequence number
      of the most recent packet that added information to the RJSS
      structure.  If the seqnum of a structure is updated, the seqnums
      of all structures above it in the recovery journal hierarchy are
      also updated.  Thus, a packet that caused an update to a specific
      jsend_chapter structure would update the seqnum values of this
      structure and of the jsend_channel and jsend_journal structures
      that contain it.

   3. Ancillary variables used by the sending algorithm.

   A seqnum variable for a level is set to zero if the checkpoint
   history contains no information at the level of the seqnum variable,
   and no information at any level below the level of the seqnum
   variable.  This coding scheme assumes that the first sequence number
   of a stream is normalized to 1, and limits the total number of stream
   packets to 2^32 - 1.

   The cm_unused and ch_never parameters in Figures 1-2 define the
   subset of MIDI commands supported by the sender (see Appendix C.2.3
   of [RFC4695] for details).  The sender transmits most voice commands
   but does not transmit system commands.  The sender assumes that the
   MIDI source uses note commands in the typical way.  Thus, the sender
   does not use the Chapter E note resiliency tools (Appendix A.7 of
   [RFC4695]).  The sender does not support Control Change commands for
   controller numbers with All Notes Off (123-127), All Sound Off (120),
   and Reset All Controllers (121) semantics and does not support
   enhanced Chapter C encoding (Appendix A.3.3 of [RFC4695]).

   We chose this subset of MIDI commands to simplify the example.  In
   particular, the command restrictions ensure that all commands are
   active, that all note commands are N-active, and that all Control
   Change commands are C-active (see Appendix A.1 of [RFC4695] for
   definitions of active, N-active, and C-active).

   In the sections that follow, we describe the tasks a sender performs
   to manage the recovery journal system.
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5.1.  Initializing the RJSS

   At the start of a stream, the sender initializes the RJSS.  All
   seqnum variables are set to zero, including all elements of
   note_seqnum[] and control_seqnum[].

   The sender initializes jheader[] to form a recovery journal header
   that codes an empty journal.  The S bit of the header is set to 1,
   and the A, Y, R, and TOTCHAN header fields are set to zero.  The
   checkpoint packet sequence number field is set to the sequence number
   of the upcoming first RTP packet (per Appendix A.1 of [RFC4695]).

Lazzaro & Wawrzynek          Informational                     [Page 16]



RFC 4696          An Implementation Guide for RTP MIDI     November 2006

     typedef unsigned char  uint8;      /* must be 1 octet  */
     typedef unsigned short uint16;     /* must be 2 octet  */
     typedef unsigned long  uint32;     /* must be 4 octets */

     /**************************************************************/
     /* leaf level hierarchy: Chapter W, Appendix A.5 of [RFC4695] */
     /**************************************************************/

     typedef struct jsend_chapterw {  /* Pitch Wheel (0xE) */
      uint8  chapterw[2]; /* bitfield Figure A.5.1 [RFC4695] */
      uint32 seqnum;      /* extended sequence number, or 0 */
     } jsend_chapterw;

     /**************************************************************/
     /* leaf level hierarchy: Chapter N, Appendix A.6 of [RFC4695] */
     /**************************************************************/

     typedef struct jsend_chaptern { /* Note commands (0x8, 0x9) */

      /* chapter N maximum size is 274 octets: a 2 octet header, */
      /* and a maximum of 128 2-octet logs and 16 OFFBIT octets  */

      uint8  chaptern[274];     /* bitfield Figure A.6.1 [RFC4695] */
      uint16 size;              /* actual size of chaptern[]     */
      uint32 seqnum;            /* extended seq number, or 0     */
      uint32 note_seqnum[128];  /* most recent note seqnum, or 0 */
      uint32 note_tstamp[128];  /* NoteOn execution timestamp    */
      uint32 bitfield_ptr[128]; /* points to a chapter log, or 0 */
     } jsend_chaptern;

     /**************************************************************/
     /* leaf level hierarchy: Chapter C, Appendix A.3 of [RFC4695] */
     /**************************************************************/

     typedef struct jsend_chapterc {     /* Control Change (0xB) */

      /* chapter C maximum size is 257 octets: a 1 octet header */
      /* and a maximum of 128 2-octet logs                      */

      uint8  chapterc[257];    /* bitfield Figure A.3.1 [RFC4695] */
      uint16 size;             /* actual size of chapterc[]      */
      uint32 seqnum;           /* extended sequence number, or 0 */
      uint32 control_seqnum[128]; /* most recent seqnum, or 0    */
      uint32 bitfield_ptr[128]; /* points to a chapter log, or 0 */
     } jsend_chapterc;

         Figure 9. Recovery Journal Sending Structure (part 1)
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     /**************************************************************/
     /* leaf level hierarchy: Chapter P, Appendix A.2 of [RFC4695] */
     /**************************************************************/

     typedef struct jsend_chapterp { /* MIDI Program Change (0xC) */

      uint8  chapterp[3]; /* bitfield Figure A.2.1 [RFC4695] */
      uint32 seqnum;      /* extended sequence number, or 0 */

     } jsend_chapterp;

     /***************************************************/
     /* second-level of hierarchy, for channel journals */
     /***************************************************/

     typedef struct jsend_channel {

      uint8  cheader[3]; /* header Figure 9 [RFC4695]) */
      uint32 seqnum;     /* extended sequence number, or 0  */

      jsend_chapterp chapterp;           /* chapter P info  */
      jsend_chapterc chapterc;           /* chapter C info  */
      jsend_chapterw chapterw;           /* chapter W info  */
      jsend_chaptern chaptern;           /* chapter N info  */

     } jsend_channel;

     /*******************************************************/
     /* top level of hierarchy, for recovery journal header */
     /*******************************************************/

      typedef struct jsend_journal {

      uint8 jheader[3]; /* header Figure 8, [RFC4695] */
                        /* Note: Empty journal has a header */

      uint32 seqnum;    /* extended sequence number, or 0   */
                        /* seqnum = 0 codes empty journal   */

      jsend_channel channels[16];  /* channel journal state */
                                   /* index is MIDI channel */

      } jsend_journal;

       Figure 9. Recovery Journal Sending Structure (part 2)
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   In jsend_chaptern, elements of note_tstamp[] are set to zero.  In
   jsend_chaptern and jsend_chapterc, elements of bitfield_ptr[] are set
   to the null pointer index value (bitfield_ptr[] is an array whose
   elements point to the first octet of the note or control log
   associated with the array index).

5.2.  Traversing the RJSS

   Whenever an RTP packet is created (Step 3 of the algorithm defined in
   Figure 8), the sender traverses the RJSS to create the recovery
   journal for the packet.  The traversal begins at the top level of the
   RJSS.  The sender copies jheader[] into the packet and then sets the
   S bit of jheader[] to 1.

   The traversal continues depth-first, visiting every jsend_channel
   whose seqnum variable is non-zero.  The sender copies the cheader[]
   array into the packet and then sets the S bit of cheader[] to 1.
   After each cheader[] copy, the sender visits each leaf-level chapter,
   in the order of its appearance in the chapter journal Table of
   Contents (first P, then C, then W, then N, as shown in Figure 9 of
   [RFC4695]).

   If a chapter has a non-zero seqnum, the sender copies the chapter
   bitfield array into the packet and then sets the S bit of the RJSS
   array to 1.  For chaptern[], the B bit is also set to 1.  For the
   variable-length chapters (chaptern[] and chapterc[]), the sender
   checks the size variable to determine the bitfield length.

   Before copying chaptern[], the sender updates the Y bit of each note
   log to code the onset of the associated NoteOn command (Figure A.6.3
   in [RFC4695]).  To determine the Y bit value, the sender checks the
   note_tstamp[] array for note timing information.

5.3.  Updating the RJSS

   After an RTP packet is sent, the sender updates the RJSS to refresh
   the checkpoint history (Step 5 of the sending algorithm defined in
   Figure 8).  For each command in the MIDI list of the sent packet, the
   sender performs the update procedure we now describe.

   The update procedure begins at the leaf level.  The sender generates
   a new bitfield array for the chapter associated with the MIDI command
   using the chapter-specific semantics defined in Appendix A of
   [RFC4695].

   For Chapter N and Chapter C, the sender uses the bitfield_ptr[] array
   to locate and update an existing log for a note or controller.  If a
   log does not exist, the sender adds a log to the end of the
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   chaptern[] or chapterc[] bitfield and changes the bitfield_ptr[]
   value to point to the log.  For Chapter N, the sender also updates
   note_tstamp[].

   The sender also clears the S bit of the chapterp[], chapterw[], or
   chapterc[] bitfield.  For chaptern[], the sender clears the S bit or
   the B bit of the bitfield, as described in Appendix A.6 of [RFC4695].

   Next, the sender refreshes the upper levels of the RJSS hierarchy.
   At the second level, the sender updates the cheader[] bitfield of the
   channel associated with the command.  The sender sets the S bit of
   cheader[] to 0.  If the new command forced the addition of a new
   chapter or channel journal, the sender may also update other
   cheader[] fields.  At the top level, the sender updates the top-level
   jheader[] bitfield in a similar manner.

   Finally, the sender updates the seqnum variables associated with the
   changed bitfield arrays.  The sender sets the seqnum variables to the
   extended sequence number of the packet.

5.4.  Trimming the RJSS

   At regular intervals, receivers send RTCP receiver reports to the
   sender (as described in Section 6.4.2 of [RFC3550]).  These reports
   include the extended highest sequence number received (EHSNR) field.
   This field codes the highest sequence number that the receiver has
   observed from the sender, extended to disambiguate sequence number
   rollover.

   When the sender receives an RTCP receiver report, it runs the RJSS
   trimming algorithm.  The trimming algorithm uses the EHSNR to trim
   away parts of the RJSS.  In this way, the algorithm reduces the size
   of recovery journals sent in subsequent RTP packets.  The algorithm
   conforms to the closed-loop sending policy defined in Appendix
   C.2.2.2 of [RFC4695].

   The trimming algorithm relies on the following observation: if the
   EHSNR indicates that a packet with sequence number K has been
   received, MIDI commands sent in packets with sequence numbers J <= K
   may be removed from the RJSS without violating the closed-loop
   policy.

   To begin the trimming algorithm, the sender extracts the EHSNR field
   from the receiver report and adjusts the EHSNR to reflect the
   sequence number extension prefix of the sender.  Then, the sender
   compares the adjusted EHSNR value with seqnum fields at each level of
   the RJSS, starting at the top level.
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   Levels whose seqnum is less than or equal to the adjusted EHSNR are
   trimmed, by setting the seqnum to zero.  If necessary, the jheader[]
   and cheader[] arrays above the trimmed level are adjusted to match
   the new journal layout.  The checkpoint packet sequence number field
   of jheader[] is updated to match the EHSNR.

   At the leaf level, the sender trims the size of the variable-length
   chaptern[] and chapterc[] bitfields.  The sender loops through the
   note_seqnum[] or control_seqnum[] array and removes chaptern[] or
   chapterc[] logs whose seqnum value is less than or equal to the
   adjusted EHSNR.  The sender sets the associated bitfield_ptr[] to
   null and updates the LENGTH field of the associated cheader[]
   bitfield.

   Note that the trimming algorithm does not add information to the
   checkpoint history.  As a consequence, the trimming algorithm does
   not clear the S bit (and for chaptern[], the B bit) of any recovery
   journal bitfield.  As a second consequence, the trimming algorithm
   does not set RJSS seqnum variables to the EHSNR value.

5.5.  Implementation Notes

   For pedagogical purposes, the recovery journal sender we describe has
   been simplified in several ways.  In practice, an implementation
   would use enhanced versions of the traversing, updating, and trimming
   algorithms presented in Sections 5.2-5.4.

6.  Receiving Streams: General Considerations

   In this section, we discuss receiver implementation issues.

   To begin, we imagine that an ideal network carries the RTP stream.
   Packets are never lost or reordered, and the end-to-end latency is
   constant.  In addition, we assume that all commands coded in the MIDI
   list of a packet share the same timestamp (an assumption coded by the
   "rtp_ptime" and "rtp_maxptime" values in Figures 1-2; see Appendix
   C.4.1 of [RFC4695] for details).

   Under these conditions, a simple algorithm may be used to render a
   high-quality performance.  Upon receipt of an RTP packet, the
   receiver immediately executes the commands coded in the MIDI command
   section of the payload.  Commands are executed in the order of their
   appearance in the MIDI list.  The command timestamps are ignored.
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   Unfortunately, this simple algorithm breaks down once we relax our
   assumptions about the network and the MIDI list:

   1. If we permit lost and reordered packets to occur in the network,
      the algorithm may produce unrecoverable rendering artifacts,
      violating the mandate defined in Section 4 of [RFC4695].

   2. If we permit the network to exhibit variable latency, the
      algorithm modulates the network jitter onto the rendered MIDI
      command stream.

   3. If we permit a MIDI list to code commands with different
      timestamps, the algorithm adds temporal jitter to the rendered
      performance, as it ignores MIDI list timestamps.

   In this section, we discuss interactive receiver design techniques
   under these relaxed assumptions.  Section 6.1 describes a receiver
   design for high-performance Wide Area Networks (WANs), and Section
   6.2 discusses design issues for other types of networks.

6.1.  The NMP Receiver Design

   The Network Musical Performance (NMP) system [NMP] is an interactive
   performance application that uses an early version of the RTP MIDI
   payload format.  NMP is designed for use between universities within
   the State of California, which use the high-performance CalREN2
   network.

   In the NMP system, network artifacts may affect how a musician hears
   the performances of remote players.  However, the network does not
   affect how a musician hears his own performance.

   Several aspects of CalREN2 network behavior (as measured in 2001
   timeframe, as documented in [NMP]) guided the NMP system design:

   o  The median symmetric latency (1/2 the round-trip time) of packets
      sent between network sites is comparable to the acoustic latency
      between two musicians located in the same room.  For example, the
      latency between Berkeley and Stanford is 2.1 ms, corresponding to
      an acoustic distance of 2.4 feet (0.72 meters).  These campuses
      are 40 miles (64 km) apart.  Preserving the benefits of the
      underlying network latency at the application level was a key NMP
      design goal.

   o  For most times of day, the nominal temporal jitter is quite short.
      For Berkeley-Stanford, the standard deviation of the round-trip
      time was under 200 microseconds.
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   o  For most times of day, a few percent (0-4%) of the packets sent
      arrive significantly late (> 40 ms), probably due to a queuing
      transient somewhere in the network path.  More rarely (< 0.1%), a
      packet is lost during the transient.

   o  At predictable times during the day (before lunchtime, at the end
      of the workday, etc.), network performance deteriorates (10-20%
      late packets) in a manner that makes the network unsuitable for
      low-latency interactive use.

   o  CalREN2 has deeply over-provisioned bandwidth, relative to MIDI
      bandwidth usage.

   The NMP sender freely uses network bandwidth to improve the
   performance experience.  As soon as a musician generates a MIDI
   command, an RTP packet coding the command is sent to the other
   players.  This sending algorithm reduces latency at the cost of
   bandwidth.  In addition, guard packets (described in Section 4.2) are
   sent at frequent intervals to minimize the impact of packet loss.

   The NMP receiver maintains a model of the stream and uses this model
   as the basis of its resiliency system.  Upon receipt of a packet, the
   receiver predicts the RTP sequence number and the RTP timestamp (with
   error bars) of the packet.  Under normal network conditions, about
   95% of received packets fit the predictions [NMP].  In this common
   case, the receiver immediately executes the MIDI command coded in the
   packet.

   Note that the NMP receiver does not use a playout buffer; the design
   is optimized for lowest latency at the expense of command jitter.
   Thus, the NMP receiver design does not completely satisfy the
   interoperability text in Appendix C.7.2 of [RFC4695], which requires
   that receivers in network musical performance applications be capable
   of using a playout buffer.

   Occasionally, an incoming packet fits the sequence number prediction,
   but falls outside the timestamp prediction error bars (see Appendix B
   of [NMP] for timestamp model details).  In most cases, the receiver
   still executes the command coded in the packet.  However, the
   receiver discards NoteOn commands with non-zero velocity.  By
   discarding late commands that sound notes, the receiver prevents
   "straggler notes" from disturbing a performance.  By executing all
   other late commands, the receiver quiets "soft stuck notes"
   immediately and updates the state of the MIDI system.

   More rarely, an incoming packet does not fit the sequence number
   prediction.  The receiver keeps track of the highest sequence number
   received in the stream and predicts that an incoming packet will have
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   a sequence number one greater than this value.  If the sequence
   number of an incoming packet is greater than the prediction, a packet
   loss has occurred.  If the sequence number of the received packet is
   less than the prediction, the packet has been received out of order.
   All sequence number calculations are modulo 2^16 and use standard
   methods (described in [RFC3550]) to avoid tracking errors during
   rollover.

   If a packet loss has occurred, the receiver examines the journal
   section of the received packet and uses it to gracefully recover from
   the loss episode.  We describe this recovery procedure in Section 7
   of this memo.  The recovery process may result in the execution of
   one or more MIDI commands.  After executing the recovery commands,
   the receiver processes the MIDI command encoded in the packet using
   the timestamp model test described above.

   If a packet is received out of order, the receiver ignores the
   packet.  The receiver takes this action because a packet received out
   of order is always preceded by a packet that signalled a loss event.
   This loss event triggered the recovery process, which may have
   executed recovery commands.  The MIDI command coded in the out-of-
   order packet might, if executed, duplicate these recovery commands,
   and this duplication might endanger the integrity of the stream.
   Thus, ignoring the out-of-order packet is the safe approach.

6.2.  High-Jitter Networks, Local Area Networks

   The NMP receiver targets a network with a particular set of
   characteristics: low nominal jitter, low packet loss, and occasional
   outlier packets that arrive very late.  In this section, we consider
   how networks with different characteristics impact receiver design.

   Networks with significant nominal jitter cannot use the buffer-free
   receiver design described in Section 6.1.  For example, the NMP
   system performs poorly for musicians that use dial-up modem
   connections, because the buffer-free receiver design modulates modem
   jitter onto the performances.  Receivers designed for high-jitter
   networks should use a substantial playout buffer.  References [GRAME]
   and [CCRMA] describe how to use playout buffers in latency-critical
   applications.

   Receivers intended for use on Local Area Networks (LANs) face a
   different set of issues.  A dedicated LAN fabric built with modern
   hardware is in many ways a predictable environment.  The network
   problems addressed by the NMP receiver design (packet loss and
   outlier late packets) might only occur under extreme network overload
   conditions.
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   Systems designed for this environment may choose to configure streams
   without the recovery journal system (Appendix C.2.1 of [RFC4695]).
   Receivers may also wish to forego or simplify the detection of
   outlier late packets.  Receivers should monitor the RTP sequence
   numbers of incoming packets to detect network unreliability.

   However, in some respects, LAN applications may be more demanding
   than WAN applications.  In LAN applications, musicians may be
   receiving performance feedback from audio that is rendered from the
   stream.  The tolerance a musician has for latency and jitter in this
   context may be quite low.

   To reduce the perceived jitter, receivers may use a small playout
   buffer (in the range of 100us to 2ms).  The buffer adds a small
   amount of latency to the system, which may be annoying to some
   players.  Receiver designs should include buffer tuning parameters to
   let musicians adjust the tradeoff between latency and jitter.

7.  Receiving Streams: The Recovery Journal

   In this section, we describe the recovery algorithm used by the NMP
   receiver [NMP].  In most ways, the recovery techniques we describe
   are generally applicable to interactive receiver design.  However, a
   few aspects of the design are specialized for the NMP system:

   o  The recovery algorithm covers a subset of the MIDI command set.
      MIDI Systems (0xF), Poly Aftertouch (0xA), and Channel Aftertouch
      (0xD) commands are not protected, and Control Change (0xB) command
      protection is simplified.  Note commands for a particular note
      number are assumed to follow the typical NoteOn->NoteOff->NoteOn
      ->NoteOff pattern.  The cm_unused and ch_never parameters in
      Figures 1-2 specify this coverage.

   o  The NMP system does not use a playout buffer.  Therefore, the
      recovery algorithm does not address interactions with a playout
      buffer.

   At a high level, the receiver algorithm works as follows.  Upon
   detection of a packet loss, the receiver examines the recovery
   journal of the packet that ends the loss event.  If necessary, the
   receiver executes one or more MIDI commands to recover from the loss.

   To prepare for recovery, a receiver maintains a data structure, the
   Recovery Journal Receiver Structure (RJRS).  The RJRS codes
   information about the MIDI commands the receiver executes (both
   incoming stream commands and self-generated recovery commands).  At
   the start of the stream, the RJRS is initialized to code that no
   commands have been executed.  Immediately after executing a MIDI
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   command, the receiver updates the RJRS with information about the
   command.

   We now describe the recovery algorithm in detail.  We begin with two
   definitions that classify loss events.  These definitions assume that
   the packet that ends the loss event has RTP sequence number I.

   o  Single-packet loss.  A single-packet loss occurs if the last
      packet received before the loss event (excluding out-of-order
      packets) has the sequence number I-2 (modulo 2^16).

   o  Multi-packet loss.  A multi-packet loss occurs if the last packet
      received before the loss event (excluding out-of-order packets)
      has a sequence number less than I-2 (modulo 2^16).

   Upon detection of a packet loss, the recovery algorithm examines the
   recovery journal header (Figure 8 of [RFC4695]) to check for special
   cases:

   o  If the header field A is 0, the recovery journal has no channel
      journals, so no action is taken.

   o  If a single-packet loss has occurred, and if the header S bit is
      1, the lost packet has a MIDI command section with an empty MIDI
      list.  No action is taken.

   If these checks fail, the algorithm parses the recovery journal body.
   For each channel journal (Figure 9 in [RFC4695]) in the recovery
   journal, the receiver compares the data in each chapter journal
   (Appendix A of [RFC4695]) to the RJRS data for the chapter.  If the
   data are inconsistent, the algorithm infers that MIDI commands
   related to the chapter journal have been lost.  The recovery
   algorithm executes MIDI commands to repair this loss and updates the
   RJRS to reflect the repair.

   For single-packet losses, the receiver skips channel and chapter
   journals whose S bits are set to 1.  For multi-packet losses, the
   receiver parses each channel and chapter journal and checks for
   inconsistency.

   In the sections that follow, we describe the recovery steps that are
   specific to each chapter journal.  We cover 4 chapter journal types:
   P (Program Change, 0xC), C (Control Change, 0xB), W (Pitch Wheel,
   0xE), and N (Note, 0x8 and 0x9).  Chapters are parsed in the order of
   their appearance in the channel journal (P, then W, then N, then C).
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   The sections below reference the C implementation of the RJRS shown
   in Figure 10.  This structure is hierarchical, reflecting the
   recovery journal architecture.  At the leaf level, specialized data
   structures (jrec_chapterw, jrec_chaptern, jrec_chapterc, and
   jrec_chapterp) code state variables for a single chapter journal
   type.  A mid-level structure (jrec_channel) represents a single MIDI
   channel, and a top-level structure (jrec_stream) represents the
   entire MIDI stream.

Lazzaro & Wawrzynek          Informational                     [Page 27]



RFC 4696          An Implementation Guide for RTP MIDI     November 2006

     typedef unsigned char  uint8;       /* must be 1 octet  */
     typedef unsigned short uint16;      /* must be 2 octets */
     typedef unsigned long  uint32;      /* must be 4 octets */

     /*****************************************************************/
     /* leaf level of hierarchy: Chapter W, Appendix A.5 of [RFC4695] */
     /*****************************************************************/

     typedef struct jrec_chapterw {   /* MIDI Pitch Wheel (0xE) */

      uint16 val;           /* most recent 14-bit wheel value   */

     } jrec_chapterw;

     /*****************************************************************/
     /* leaf level of hierarchy: Chapter N, Appendix A.6 of [RFC4695] */
     /*****************************************************************/

     typedef struct jrec_chaptern { /* Note commands (0x8, 0x9) */

      /* arrays of length 128 --> one for each MIDI Note number */

      uint32 time[128];    /* exec time of most recent NoteOn */
      uint32 extseq[128];  /* extended seqnum for that NoteOn */
      uint8  vel[128];     /* NoteOn velocity (0 for NoteOff) */

     } jrec_chaptern;

     /*****************************************************************/
     /* leaf level of hierarchy: Chapter C, Appendix A.3 of [RFC4695] */
     /*****************************************************************/

     typedef struct jrec_chapterc {     /* Control Change (0xB) */

      /* array of length 128 --> one for each controller number */

      uint8 value[128];   /* Chapter C value tool state */
      uint8 count[128];   /* Chapter C count tool state */
      uint8 toggle[128];  /* Chapter C toggle tool state */

     } jrec_chapterc;

        Figure 10. Recovery Journal Receiving Structure (part 1)
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     /*****************************************************************/
     /* leaf level of hierarchy: Chapter P, Appendix A.2 of [RFC4695] */
     /*****************************************************************/

     typedef struct jrec_chapterp { /* MIDI Program Change (0xC) */

      uint8 prognum;       /* most recent 7-bit program value  */
      uint8 prognum_qual;  /* 1 once first 0xC command arrives */

      uint8 bank_msb;     /* most recent Bank Select MSB value */
      uint8 bank_msb_qual;   /* 1 once first 0xBn 0x00 arrives */

      uint8 bank_lsb;     /* most recent Bank Select LSB value */
      uint8 bank_lsb_qual;   /* 1 once first 0xBn 0x20 arrives */

     } jrec_chapterp;

     /***************************************************/
     /* second-level of hierarchy, for MIDI channels    */
     /***************************************************/

     typedef struct jrec_channel {

      jrec_chapterp chapterp;  /* Program Change (0xC) info  */
      jrec_chapterc chapterc;  /* Control Change (0xB) info  */
      jrec_chapterw chapterw;  /* Pitch Wheel (0xE) info  */
      jrec_chaptern chaptern;  /* Note (0x8, 0x9) info  */

     } jrec_channel;

     /***********************************************/
     /* top level of hierarchy, for the MIDI stream */
     /***********************************************/

      typedef struct jrec_stream {

      jrec_channel channels[16];  /* index is MIDI channel */

      } jrec_stream;

       Figure 10. Recovery Journal Receiving Structure (part 2)
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7.1.  Chapter W: MIDI Pitch Wheel (0xE)

   Chapter W of the recovery journal protects against the loss of MIDI
   Pitch Wheel (0xE) commands.  A common use of the Pitch Wheel command
   is to transmit the current position of a rotary "pitch wheel"
   controller placed on the side of MIDI piano controllers.  Players use
   the pitch wheel to dynamically alter the pitch of all depressed keys.

   The NMP receiver maintains the jrec_chapterw structure (Figure 10)
   for each voice channel in jrec_stream to code pitch wheel state
   information.  In jrec_chapterw, val holds the 14-bit data value of
   the most recent Pitch Wheel command that has arrived on a channel.
   At the start of the stream, val is initialized to the default pitch
   wheel value (0x2000).

   At the end of a loss event, a receiver may find a Chapter W (Appendix
   A.5 in [RFC4695]) bitfield in a channel journal.  This chapter codes
   the 14-bit data value of the most recent MIDI Pitch Wheel command in
   the checkpoint history.  If the Chapter W and jrec_chapterw pitch
   wheel values do not match, one or more commands have been lost.

   To recover from this loss, the NMP receiver immediately executes a
   MIDI Pitch Wheel command on the channel, using the data value coded
   in the recovery journal.  The receiver then updates the jrec_chapterw
   variables to reflect the executed command.

7.2.  Chapter N: MIDI NoteOn (0x8) and NoteOff (0x9)

   Chapter N of the recovery journal protects against the loss of MIDI
   NoteOn (0x9) and NoteOff (0x8) commands.  If a NoteOn command is
   lost, a note is skipped.  If a NoteOff command is lost, a note may
   sound indefinitely.  Recall that NoteOn commands with a velocity
   value of 0 have the semantics of NoteOff commands.

   The recovery algorithms in this section only work for MIDI sources
   that produce NoteOn->NoteOff->NoteOn->NoteOff patterns for a note
   number.  Piano keyboard and drum pad controllers produce these
   patterns.  MIDI sources that use NoteOn->NoteOn->NoteOff->NoteOff
   patterns for legato repeated notes, such as guitar and wind
   controllers, require more sophisticated recovery strategies.  Chapter
   E (not used in this example) supports recovery algorithms for
   atypical note command patterns (see Appendix A.7 of [RFC4695] for
   details).

   The NMP receiver maintains a jrec_chaptern structure (Figure 10) for
   each voice channel in jrec_stream to code note-related state
   information.  State is kept for each of the 128 note numbers on a
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   channel, using three arrays of length 128 (vel[], seq[], and time[]).
   The arrays are initialized to zero at the start of a stream.

   The vel[n] array element holds information about the most recent note
   command for note number n.  If this command is a NoteOn command,
   vel[n] holds the velocity data for the command.  If this command is a
   NoteOff command, vel[n] is set to 0.

   The time[n] and extseq[n] array elements code information about the
   most recently executed NoteOn command.  The time[n] element holds the
   execution time of the command, referenced to the local timebase of
   the receiver.  The extseq[n] element holds the RTP extended sequence
   number of the packet associated with the command.  For incoming
   stream commands, extseq[n] codes the packet of the associated MIDI
   list.  For commands executed to perform loss recovery, extseq[n]
   codes the packet of the associated recovery journal.

   The Chapter N recovery journal bitfield (Figure A.6.1 in [RFC4695])
   consists of two data structures: a bit array coding recently sent
   NoteOff commands that are vulnerable to packet loss, and a note log
   list coding recently sent NoteOn commands that are vulnerable to
   packet loss.

   At the end of a loss event, Chapter N recovery processing begins with
   the NoteOff bit array.  For each set bit in the array, the receiver
   checks the corresponding vel[n] element in jrec_chaptern.  If vel[n]
   is non-zero, a NoteOff command or a NoteOff->NoteOn->NoteOff command
   sequence has been lost.  To recover from this loss, the receiver
   immediately executes a NoteOff command for the note number on the
   channel and sets vel[n] to 0.

   The receiver then parses the note log list, using the S bit to skip
   over "safe" logs in the single-packet loss case.  For each at-risk
   note log, the receiver checks the corresponding vel[n] element.

   If vel[n] is zero, a NoteOn command or a NoteOn->NoteOff->NoteOn
   command sequence has been lost.  The receiver may execute the most
   recent lost NoteOn (to play the note) or may take no action (to skip
   the note), based on criteria we describe at the end of this section.
   Whether the note is played or skipped, the receiver updates the
   vel[n], time[n], and extseq[n] elements as if the NoteOn executed.

   If vel[n] is non-zero, the receiver performs several checks to test
   if a NoteOff->NoteOn sequence has been lost.

   o  If vel[n] does not match the note log velocity, the note log must
      code a different NoteOn command, and thus a NoteOff->NoteOn
      sequence has been lost.
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   o  If extseq[n] is less than the (extended) checkpoint packet
      sequence numbed coded in the recovery journal header (Figure 8 of
      [RFC4695]), the vel[n] NoteOn command is not in the checkpoint
      history, and thus a NoteOff->NoteOn sequence has been lost.

   o  If the Y bit is set to 1, the NoteOn is musically "simultaneous"
      with the RTP timestamp of the packet.  If time[n] codes a time
      value that is clearly not recent, a NoteOff->NoteOn sequence has
      been lost.

   If these tests indicate a lost NoteOff->NoteOn sequence, the receiver
   immediately executes a NoteOff command.  The receiver decides if the
   most graceful action is to play or to skip the lost NoteOn, using the
   criteria we describe at the end of this section.  Whether or not the
   receiver issues a NoteOn command, the vel[n], time[n], and extseq[n]
   arrays are updated as if it did.

   Note that the tests above do not catch all lost NoteOff->NoteOn
   commands.  If a fast NoteOn->NoteOff->NoteOn sequence occurs on a
   note number with identical velocity values for both NoteOn commands,
   a lost NoteOff->NoteOn does not result in the recovery algorithm
   generating a NoteOff command.  Instead, the first NoteOn continues to
   sound, to be terminated by the future NoteOff command.  In practice,
   this (rare) outcome is not musically objectionable.

   The number of tests in this resiliency algorithm may seem excessive.
   However, in some common cases, a subset of the tests is not useful.
   For example, MIDI streams that assigns the same velocity value to all
   note events are often produced by inexpensive keyboards.  The vel[n]
   tests are not useful for these streams.

   Finally, we discuss how the receiver decides whether to play or to
   skip a lost NoteOn command.  The note log Y bit is set if the NoteOn
   is "simultaneous" with the RTP timestamp of the packet holding the
   note log.  If Y is 0, the receiver does not execute a NoteOn command.
   If Y is 1, and if the packet has not arrived late, the receiver
   immediately executes a NoteOn command for the note number, using the
   velocity coded in the note log.

7.3.  Chapter C: MIDI Control Change (0xB)

   Chapter C (Appendix A.3 in [RFC4695]) protects against the loss of
   MIDI Control Change commands.  A Control Change command alters the
   7-bit value of one of the 128 MIDI controllers.

   Chapter C offers three tools for protecting a Control Change command:
   the value tool (for graded controllers such as sliders), the toggle
   tool (for on/off switches), and the count tool (for momentary-contact
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   switches).  Senders choose a tool to encode recovery information for
   a controller and encode the tool type along with the data in the
   journal (Figures A.3.2 and A.3.3 in [RFC4695]).

   A few uses of Control Change commands are not solely protected by
   Chapter C.  The protection of controllers 0 and 32 (Bank Select MSB
   and Bank Select LSB) is shared between Chapter C and Chapter P
   (Section 7.4).

   Chapter M (Appendix A.4 of [RFC4695]) also protects the Control
   Change command.  However, the NMP system does not use this chapter,
   because MPEG 4 Structured Audio [MPEGSA] does not use the controllers
   protected by this chapter.

   The Chapter C bitfield consists of a list of controller logs.  Each
   log codes the controller number, the tool type, and the state value
   for the tool.

   The NMP receiver maintains the jrec_chapterc structure (Figure 10)
   for each voice channel in jrec_stream to code Control Change state
   information.  The value[] array holds the most recent data values for
   each controller number.  At the start of the stream, value[] is
   initialized to the default controller data values specified in
   [MPEGSA].

   The count[] and toggle[] arrays hold the count tool and toggle tool
   state values.  At the start of a stream, these arrays are initialized
   to zero.  Whenever a Control Command executes, the receiver updates
   the count[] and toggle[] state values, using the algorithms defined
   in Appendix A.3 of [RFC4695].

   At the end of a loss event, the receiver parses the Chapter C
   controller log list, using the S bit to skip over "safe" logs in the
   single-packet loss case.  For each at-risk controller number n, the
   receiver determines the tool type in use (value, toggle, or count)
   and compares the data in the log to the associated jrec_chapterc
   array element (value[n], toggle[n], or count[n]).  If the data do not
   match, one or more Control Change commands have been lost.

   The method the receiver uses to recover from this loss depends on the
   tool type and the controller number.  For graded controllers
   protected by the value tool, the receiver executes a Control Change
   command using the new data value.

   For the toggle and count tools, the recovery action is more complex.
   For example, the Damper Pedal (Sustain) controller (number 64) is
   typically used as a sustain pedal for piano-like sounds and is
   typically coded using the toggle tool.  If Damper Pedal (Sustain)
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   Control Change commands are lost, the receiver takes different
   actions depending on the starting and ending state of the lost
   sequence, to ensure that "ringing" piano notes are "damped" to
   silence.

   After recovering from the loss, the receiver updates the value[],
   toggle[], and count[] arrays to reflect the Chapter C data and the
   executed commands.

7.4.  Chapter P: MIDI Program Change (0xC)

   Chapter P of the recovery journal protects against the loss of MIDI
   Program Change (0xC) commands.

   The 7-bit data value of the Program Change command selects one of 128
   possible timbres for the channel.  To increase the number of possible
   timbres, Control Change (0xB) commands may be issued prior to the
   Program Change command to select a "program bank".  The Bank Select
   MSB (number 0) and Bank Select LSB (number 32) controllers specify
   the 14-bit bank number that subsequent Program Change commands
   reference.

   The NMP receiver maintains the jrec_chapterp structure (Figure 10)
   for each voice channel in jrec_stream to code Program Change state
   information.

   The prognum variable of jrec_chapterp holds the data value for the
   most recent Program Change command that has arrived on the stream.
   The bank_msb and bank_lsb variables of jrec_chapterp code the Bank
   Select MSB and Bank Select LSB controller data values that were in
   effect when that Program Change command arrived.  The prognum_qual,
   bank_msb_qual, and bank_lsb_qual variables are initialized to 0 and
   are set to 1 to qualify the associated data values.

   Chapter P fields code the data value for the most recent Program
   Change command, and the MSB and LSB bank values in effect for that
   command.

   At the end of a loss event, the receiver checks Chapter P to see if
   the recovery journal fields match the data stored in jrec_chapterp.
   If these checks fail, one or more Program Change commands have been
   lost.

   To recover from this loss, the receiver takes the following steps.
   If the B bit in Chapter P is set (Figure A.2.1 in [RFC4695]), Control
   Change bank commands have preceded the Program Change command.  The
   receiver compares the bank data coded by Chapter P with the current
   bank data for the channel (coded in jrec_channelc).
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   If the bank data do not agree, the receiver issues Control Change
   commands to align the stream with Chapter P.  The receiver then
   updates jrec_channelp and jrec_channelc variables to reflect the
   executed command(s).  Finally, the receiver issues a Program Change
   command that reflects the data in Chapter P and updates the prognum
   and qual_prognum fields in jrec_channelp.

   Note that this method relies on Chapter P recovery to precede Chapter
   C recovery during channel journal processing.  This ordering ensures
   that lost Bank Select Control Change commands that occur after a lost
   Program Change command in a stream are handled correctly.

8.  Security Considerations

   Security considerations for the RTP MIDI payload format are discussed
   in the Security Considerations section of [RFC4695].

9.  IANA Considerations

   IANA considerations for the RTP MIDI payload format are discussed in
   the IANA Considerations section of [RFC4695].
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