
Network Working Group M. Crispin
Request for Comments: 4467 University of Washington
Updates: 3501 May 2006
Category: Standards Track

 Internet Message Access Protocol (IMAP) - URLAUTH Extension

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes the URLAUTH extension to the Internet Message
 Access Protocol (IMAP) (RFC 3501) and the IMAP URL Scheme (IMAPURL)
 (RFC 2192). This extension provides a means by which an IMAP client
 can use URLs carrying authorization to access limited message data on
 the IMAP server.

 An IMAP server that supports this extension indicates this with a
 capability name of "URLAUTH".

1. Introduction

 In [IMAPURL], a URL of the form imap://fred@example.com/INBOX/;uid=20
 requires authorization as userid "fred". However, [IMAPURL] implies
 that it only supports authentication and confuses the concepts of
 authentication and authorization.

 The URLAUTH extension defines an authorization mechanism for IMAP
 URLs to replace [IMAPURL]’s authentication-only mechanism. URLAUTH
 conveys authorization in the URL string itself and reuses a portion
 of the syntax of the [IMAPURL] authentication mechanism to convey the
 authorization identity (which also defines the default namespace in
 [IMAP]).

 The URLAUTH extension provides a means by which an authorized user of
 an IMAP server can create URLAUTH-authorized IMAP URLs. A URLAUTH-
 authorized URL conveys authorization (not authentication) to the data

Crispin Standards Track [Page 1]

RFC 4467 IMAP - URLAUTH Extension May 2006

 addressed by that URL. This URL can be used in another IMAP session
 to access specific content on the IMAP server, without otherwise
 providing authorization to any other data (such as other data in the
 mailbox specified in the URL) owned by the authorizing user.

 Conceptually, a URLAUTH-authorized URL can be thought of as a "pawn
 ticket" that carries no authentication information and can be
 redeemed by whomever presents it. However, unlike a pawn ticket,
 URLAUTH has optional mechanisms to restrict the usage of a URLAUTH-
 authorized URL. Using these mechanisms, URLAUTH-authorized URLs can
 be usable by:

 . anonymous (the "pawn ticket" model)
 . authenticated users only
 . a specific authenticated user only
 . message submission acting on behalf of a specific user only

 There is also a mechanism for expiration.

 A URLAUTH-authorized URL can be used in the argument to the BURL
 command in message composition, as described in [BURL], for such
 purposes as allowing a client (with limited memory or other
 resources) to submit a message forward or to resend from an IMAP
 mailbox without requiring the client to fetch that message data.

 The URLAUTH is generated using an authorization mechanism name and an
 authorization token, which is generated using a secret mailbox access
 key. An IMAP client can request that the server generate and assign
 a new mailbox access key (thus effectively revoking all current URLs
 using URLAUTH with the old mailbox access key) but cannot set the
 mailbox access key to a key of its own choosing.

1.1. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in [KEYWORDS].

 The formal syntax uses the Augmented Backus-Naur Form (ABNF) notation
 including the core rules defined in Appendix A of [ABNF].

 In examples, "C:" and "S:" indicate lines sent by the client and
 server, respectively. If a single "C:" or "S:" label applies to
 multiple lines, then the line breaks between those lines are for
 editorial clarity only and are not part of the actual protocol
 exchange.

Crispin Standards Track [Page 2]

RFC 4467 IMAP - URLAUTH Extension May 2006

2. Concepts

2.1. URLAUTH

 The URLAUTH is a component, appended at the end of a URL, that
 conveys authorization to access the data addressed by that URL. It
 contains an authorized access identifier, an authorization mechanism
 name, and an authorization token. The authorization token is
 generated from the URL, the authorized access identifier, the
 authorization mechanism name, and a mailbox access key.

2.2. Mailbox Access Key

 The mailbox access key is a random string with at least 128 bits of
 entropy. It is generated by software (not by the human user) and
 MUST be unpredictable.

 Each user has a table of mailboxes and an associated mailbox access
 key for each mailbox. Consequently, the mailbox access key is per-
 user and per-mailbox. In other words, two users sharing the same
 mailbox each have a different mailbox access key for that mailbox,
 and each mailbox accessed by a single user also has a different
 mailbox access key.

2.3. Authorized Access Identifier

 The authorized access identifier restricts use of the URLAUTH
 authorized URL to certain users authorized on the server, as
 described in section 3.

2.4. Authorization Mechanism

 The authorization mechanism is the algorithm by which the URLAUTH is
 generated and subsequently verified, using the mailbox access key.

2.4.1. INTERNAL Authorization Mechanism

 This specification defines the INTERNAL mechanism, which uses a token
 generation algorithm of the server’s choosing and does not involve
 disclosure of the mailbox access key to the client.

 Note: The token generation algorithm chosen by the server
 implementation should be modern and reasonably secure. At the
 time of the writing of this document, an [HMAC] such as HMAC-SHA1
 is recommended.

Crispin Standards Track [Page 3]

RFC 4467 IMAP - URLAUTH Extension May 2006

 If it becomes necessary to change the token generation algorithm
 of the INTERNAL mechanism (e.g., because an attack against the
 current algorithm has been discovered), all currently existing
 URLAUTH-authorized URLs are invalidated by the change in
 algorithm. Since this would be an unpleasant surprise to
 applications that depend upon the validity of a URLAUTH-authorized
 URL, and there is no good way to do a bulk update of existing
 deployed URLs, it is best to avoid this situation by using a
 secure algorithm as opposed to one that is "good enough".

 Server implementations SHOULD consider the possibility of changing
 the algorithm. In some cases, it may be desirable to implement
 the change of algorithm in a way that newly-generated tokens use
 the new algorithm, but that for a limited period of time tokens
 using either the new or old algorithm can be validated.
 Consequently, the server SHOULD incorporate some means of
 identifying the token generation algorithm within the token.

 Although this specification is extensible for other mechanisms, none
 are defined in this document. In addition to the mechanism name
 itself, other mechanisms may have mechanism-specific data, which is
 to be interpreted according to the definition of that mechanism.

2.5. Authorization Token

 The authorization token is a deterministic string of at least 128
 bits that an entity with knowledge of the secret mailbox access key
 and URL authorization mechanism can use to verify the URL.

3. IMAP URL Extensions

 [IMAPURL] is extended by allowing the addition of
 ";EXPIRE=<datetime>" and ";URLAUTH=<access>:<mech>:<token>" to IMAP
 URLs that refer to a specific message or message parts.

 The URLAUTH is comprised of ";URLAUTH=<access>:<mech>:<token>" and
 MUST be at the end of the URL.

 URLAUTH does not apply to, and MUST NOT be used with, any IMAP URL
 that refers to an entire IMAP server, a list of mailboxes, an entire
 IMAP mailbox, or IMAP search results.

 When ";EXPIRE=<datetime>" is used, this indicates the latest date and
 time that the URL is valid. After that date and time, the URL has
 expired, and server implementations MUST reject the URL. If
 ";EXPIRE=<datetime>" is not used, the URL has no expiration, but
 still can be revoked as discussed below.

Crispin Standards Track [Page 4]

RFC 4467 IMAP - URLAUTH Extension May 2006

 The URLAUTH takes the form ";URLAUTH=<access>:<mech>:<token>". It is
 composed of three parts. The <access> portion provides the
 authorized access identifiers, which may constrain the operations and
 users that are permitted to use this URL. The <mech> portion
 provides the authorization mechanism used by the IMAP server to
 generate the authorization token that follows. The <token> portion
 provides the authorization token.

 The "submit+" access identifier prefix, followed by a userid,
 indicates that only a userid authorized as a message submission
 entity on behalf of the specified userid is permitted to use this
 URL. The IMAP server does not validate the specified userid but does
 validate that the IMAP session has an authorization identity that is
 authorized as a message submission entity. The authorized message
 submission entity MUST validate the userid prior to contacting the
 IMAP server.

 The "user+" access identifier prefix, followed by a userid, indicates
 that use of this URL is limited to IMAP sessions that are logged in
 as the specified userid (that is, have authorization identity as that
 userid).

 Note: If a SASL mechanism that provides both authorization and
 authentication identifiers is used to authenticate to the IMAP
 server, the "user+" access identifier MUST match the authorization
 identifier.

 The "authuser" access identifier indicates that use of this URL is
 limited to IMAP sessions that are logged in as an authorized user
 (that is, have authorization identity as an authorized user) of that
 IMAP server. Use of this URL is prohibited to anonymous IMAP
 sessions.

 The "anonymous" access identifier indicates that use of this URL is
 not restricted by session authorization identity; that is, any IMAP
 session in authenticated or selected state (as defined in [IMAP]),
 including anonymous sessions, may issue a URLFETCH using this URL.

 The authorization token is represented as an ASCII-encoded
 hexadecimal string, which is used to authorize the URL. The length
 and the calculation of the authorization token depends upon the
 mechanism used; but, in all cases, the authorization token is at
 least 128 bits (and therefore at least 32 hexadecimal digits).

Crispin Standards Track [Page 5]

RFC 4467 IMAP - URLAUTH Extension May 2006

4. Discussion of URLAUTH Authorization Issues

 In [IMAPURL], the userid before the "@" in the URL has two purposes:

 1) It provides context for user-specific mailbox paths such as
 "INBOX".

 2) It specifies that resolution of the URL requires logging in as
 that user and limits use of that URL to only that user.

 An obvious limitation of using the same field for both purposes is
 that the URL can only be resolved by the mailbox owner.

 URLAUTH overrides the second purpose of the userid in the IMAP URL
 and by default permits the URL to be resolved by any user permitted
 by the access identifier.

 The "user+<userid>" access identifier limits resolution of that URL
 to a particular userid, whereas the "submit+<userid>" access
 identifier is more general and simply requires that the session be
 authorized by a user that has been granted a "submit" role within the
 authentication system. Use of either of these access identifiers
 makes it impossible for an attacker, spying on the session, to use
 the same URL, either directly or by submission to a message
 submission entity.

 The "authuser" and "anonymous" access identifiers do not have this
 level of protection and should be used with caution. These access
 identifiers are primarily useful for public export of data from an
 IMAP server, without requiring that it be copied to a web or
 anonymous FTP server. Refer to the Security Considerations for more
 details.

5. Generation of URLAUTH-Authorized URLs

 A URLAUTH-authorized URL is generated from an initial URL as follows:

 An initial URL is built, ending with ";URLAUTH=<access>" but without
 the ":<mech>:<token>" components. An authorization mechanism is
 selected and used to calculate the authorization token, with the
 initial URL as the data and a secret known to the IMAP server as the
 key. The URLAUTH-authorized URL is generated by taking the initial
 URL and appending ":", the URL authorization mechanism name, ":", and
 the ASCII-encoded hexadecimal representation of the authorization
 token.

Crispin Standards Track [Page 6]

RFC 4467 IMAP - URLAUTH Extension May 2006

 Note: ASCII-encoded hexadecimal is used instead of BASE64 because
 a BASE64 representation may have "=" padding characters, which
 would be problematic in a URL.

 In the INTERNAL mechanism, the mailbox access key for that mailbox is
 the secret known to the IMAP server, and a server-selected algorithm
 is used as described in section 2.4.1.

6. Validation of URLAUTH-authorized URLs

 A URLAUTH-authorized URL is validated as follows:

 The URL is split at the ":" that separates "<access>" from
 "<mech>:<token>" in the ";URLAUTH=<access>:<mech>:<token>" portion of
 the URL. The "<mech>:<token>" portion is first parsed and saved as
 the authorization mechanism and the authorization token. The URL is
 truncated, discarding the ":" described above, to create a "rump URL"
 (the URL minus the ":" and the "<mech>:<token>" portion). The rump
 URL is then analyzed to identify the mailbox.

 If the mailbox cannot be identified, an authorization token is
 calculated on the rump URL, using random "plausible" keys (selected
 by the server) as needed, before returning a validation failure.
 This prevents timing attacks aimed at identifying mailbox names.

 If the mailbox can be identified, the authorization token is
 calculated on the rump URL and a secret known to the IMAP server
 using the given URL authorization mechanism. Validation is
 successful if, and only if, the calculated authorization token for
 that mechanism matches the authorization token supplied in
 ";URLAUTH=<access>:<mech>:<token>".

 Removal of the ":<mech>:<token>" portion of the URL MUST be the only
 operation applied to the URLAUTH-authorized URL to get the rump URL.
 In particular, URL percent escape decoding and case-folding
 (including to the domain part of the URL) MUST NOT occur.

 In the INTERNAL mechanism, the mailbox access key for that mailbox is
 used as the secret known to the IMAP server, and the same server-
 selected algorithm used for generating URLs is used to calculate the
 authorization token for verification.

Crispin Standards Track [Page 7]

RFC 4467 IMAP - URLAUTH Extension May 2006

7. Additional Commands

 These commands are extensions to the [IMAP] base protocol.

 The section headings of these commands are intended to correspond
 with where they would be located in the base protocol document if
 they were part of that document.

BASE.6.3.RESETKEY. RESETKEY Command

 Arguments: optional mailbox name
 optional mechanism name(s)

 Responses: none other than in result

 Result: OK - RESETKEY completed, URLMECH containing new data
 NO - RESETKEY error: can’t change key of that mailbox
 BAD - command unknown or arguments invalid

 The RESETKEY command has two forms.

 The first form accepts a mailbox name as an argument and generates a
 new mailbox access key for the given mailbox in the user’s mailbox
 access key table, replacing any previous mailbox access key (and
 revoking any URLs that were authorized with a URLAUTH using that key)
 in that table. By default, the mailbox access key is generated for
 the INTERNAL mechanism; other mechanisms can be specified with the
 optional mechanism argument.

 The second form, with no arguments, removes all mailbox access keys
 in the user’s mailbox access key table, revoking all URLs currently
 authorized using URLAUTH by the user.

 Any current IMAP session logged in as the user that has the mailbox
 selected will receive an untagged OK response with the URLMECH status
 response code (see section BASE.7.1.URLMECH for more details about
 the URLMECH status response code).

 Example:

 C: a31 RESETKEY
 S: a31 OK All keys removed
 C: a32 RESETKEY INBOX
 S: a32 OK [URLMECH INTERNAL] mechs
 C: a33 RESETKEY INBOX XSAMPLE
 S: a33 OK [URLMECH INTERNAL XSAMPLE=P34OKhO7VEkCbsiYY8rGEg==] done

Crispin Standards Track [Page 8]

RFC 4467 IMAP - URLAUTH Extension May 2006

BASE.6.3.GENURLAUTH. GENURLAUTH Command

 Argument: one or more URL/mechanism pairs

 Response: untagged response: GENURLAUTH

 Result: OK - GENURLAUTH completed
 NO - GENURLAUTH error: can’t generate a URLAUTH
 BAD - command unknown or arguments invalid

 The GENURLAUTH command requests that the server generate a URLAUTH-
 authorized URL for each of the given URLs using the given URL
 authorization mechanism.

 The server MUST validate each supplied URL as follows:

 (1) The mailbox component of the URL MUST refer to an existing
 mailbox.

 (2) The server component of the URL MUST contain a valid userid
 that identifies the owner of the mailbox access key table that
 will be used to generate the URLAUTH-authorized URL. As a
 consequence, the iserver rule of [IMAPURL] is modified so that
 iuserauth is mandatory.

 Note: the server component of the URL is generally the
 logged in userid and server. If not, then the logged in
 userid and server MUST have owner-type access to the
 mailbox access key table owned by the userid and server
 indicated by the server component of the URL.

 (3) There is a valid access identifier that, in the case of
 "submit+" and "user+", will contain a valid userid. This
 userid is not necessarily the same as the owner userid
 described in (2).

 (4) The server MAY also verify that the iuid and/or isection
 components (if present) are valid.

 If any of the above checks fail, the server MUST return a tagged BAD
 response with the following exception. If an invalid userid is
 supplied as the mailbox access key owner and/or as part of the access
 identifier, the server MAY issue a tagged OK response with a
 generated mailbox key that always fails validation when used with a
 URLFETCH command. This exception prevents an attacker from
 validating userids.

Crispin Standards Track [Page 9]

RFC 4467 IMAP - URLAUTH Extension May 2006

 If there is currently no mailbox access key for the given mailbox in
 the owner’s mailbox access key table, one is automatically generated.
 That is, it is not necessary to use RESETKEY prior to first-time use
 of GENURLAUTH.

 If the command is successful, a GENURLAUTH response code is returned
 listing the requested URLs as URLAUTH-authorized URLs.

 Examples:

 C: a775 GENURLAUTH "imap://joe@example.com/INBOX/;uid=20/
 ;section=1.2" INTERNAL
 S: a775 BAD missing access identifier in supplied URL
 C: a776 GENURLAUTH "imap://example.com/Shared/;uid=20/
 ;section=1.2;urlauth=submit+fred" INTERNAL
 S: a776 BAD missing owner username in supplied URL
 C: a777 GENURLAUTH "imap://joe@example.com/INBOX/;uid=20/
 ;section=1.2;urlauth=submit+fred" INTERNAL
 S: * GENURLAUTH "imap://joe@example.com/INBOX/;uid=20/;section=1.2
 ;urlauth=submit+fred:internal:91354a473744909de610943775f92038"
 S: a777 OK GENURLAUTH completed

BASE.6.3.URLFETCH. URLFETCH Command

 Argument: one or more URLs

 Response: untagged response: URLFETCH

 Result: OK - urlfetch completed
 NO - urlfetch failed due to server internal error
 BAD - command unknown or arguments invalid

 The URLFETCH command requests that the server return the text data
 associated with the specified IMAP URLs, as described in [IMAPURL]
 and extended by this document. The data is returned for all
 validated URLs, regardless of whether or not the session would
 otherwise be able to access the mailbox containing that data via
 SELECT or EXAMINE.

 Note: This command does not require that the URL refer to the
 selected mailbox; nor does it require that any mailbox be
 selected. It also does not in any way interfere with any selected
 mailbox.

Crispin Standards Track [Page 10]

RFC 4467 IMAP - URLAUTH Extension May 2006

 The URLFETCH command effectively executes with the access of the
 userid in the server component of the URL (which is generally the
 userid that issued the GENURLAUTH). By itself, the URLAUTH does NOT
 grant access to the data; once validated, it grants whatever access
 to the data is held by the userid in the server component of the URL.
 That access may have changed since the GENURLAUTH was done.

 The URLFETCH command MUST return an untagged URLFETCH response and a
 tagged OK response to any URLFETCH command that is syntactically
 valid. A NO response indicates a server internal failure that may be
 resolved on later retry.

 Note: The possibility of a NO response is to accommodate
 implementations that would otherwise have to issue an untagged BYE
 with a fatal error due to an inability to respond to a valid
 request. In an ideal world, a server SHOULD NOT issue a NO
 response.

 The server MUST return NIL for any IMAP URL that references an entire
 IMAP server, a list of mailboxes, an entire IMAP mailbox, or IMAP
 search results.

 Example:

 Note: For clarity, this example uses the LOGIN command, which
 SHOULD NOT be used over a non-encrypted communication path.

 This example is of a submit server, obtaining a message segment
 for a message that it has already validated was submitted by
 "fred".

 S: * OK [CAPABILITY IMAP4REV1 URLAUTH] example.com IMAP server
 C: a001 LOGIN submitserver secret
 S: a001 OK submitserver logged in
 C: a002 URLFETCH "imap://joe@example.com/INBOX/;uid=20/
 ;section=1.2;urlauth=submit+fred:internal
 :91354a473744909de610943775f92038"
 S: * URLFETCH "imap://joe@example.com/INBOX/;uid=20/;section=1.2
 ;urlauth=submit+fred:internal
 :91354a473744909de610943775f92038" {28}
 S: Si vis pacem, para bellum.
 S:
 S: a002 OK URLFETCH completed

Crispin Standards Track [Page 11]

RFC 4467 IMAP - URLAUTH Extension May 2006

8. Additional Responses

 These responses are extensions to the [IMAP] base protocol.

 The section headings of these responses are intended to correspond
 with where they would be located in the base protocol document if
 they were part of that document.

BASE.7.1.URLMECH. URLMECH Status Response Code

 The URLMECH status response code is followed by a list of URL
 authorization mechanism names. Mechanism names other than INTERNAL
 may be appended with an "=" and BASE64-encoded form of mechanism-
 specific data.

 This status response code is returned in an untagged OK response in
 response to a RESETKEY, SELECT, or EXAMINE command. In the case of
 the RESETKEY command, this status response code can be sent in the
 tagged OK response instead of requiring a separate untagged OK
 response.

 Example:

 C: a33 RESETKEY INBOX XSAMPLE
 S: a33 OK [URLMECH INTERNAL XSAMPLE=P34OKhO7VEkCbsiYY8rGEg==] done

 In this example, the server supports the INTERNAL mechanism and an
 experimental mechanism called XSAMPLE, which also holds some
 mechanism-specific data (the name "XSAMPLE" is for illustrative
 purposes only).

BASE.7.4.GENURLAUTH. GENURLAUTH Response

 Contents: One or more URLs

 The GENURLAUTH response returns the URLAUTH-authorized URL(s)
 requested by a GENURLAUTH command.

 Example:

 C: a777 GENURLAUTH "imap://joe@example.com/INBOX/;uid=20/
 ;section=1.2;urlauth=submit+fred" INTERNAL
 S: * GENURLAUTH "imap://joe@example.com/INBOX/;uid=20/;section=1.2
 ;urlauth=submit+fred:internal:91354a473744909de610943775f92038"
 S: a777 OK GENURLAUTH completed

Crispin Standards Track [Page 12]

RFC 4467 IMAP - URLAUTH Extension May 2006

BASE.7.4.URLFETCH. URLFETCH Response

 Contents: One or more URL/nstring pairs

 The URLFETCH response returns the message text data associated with
 one or more IMAP URLs, as described in [IMAPURL] and extended by this
 document. This response occurs as the result of a URLFETCH command.

 The returned data string is NIL if the URL is invalid for any reason
 (including validation failure). If the URL is valid, but the IMAP
 fetch of the body part returned NIL (this should not happen), the
 returned data string should be the empty string ("") and not NIL.

 Note: This command does not require that the URL refer to the
 selected mailbox; nor does it require that any mailbox be
 selected. It also does not in any way interfere with any selected
 mailbox.

 Example:

 C: a002 URLFETCH "imap://joe@example.com/INBOX/;uid=20/
 ;section=1.2;urlauth=submit+fred:internal
 :91354a473744909de610943775f92038"
 S: * URLFETCH "imap://joe@example.com/INBOX/;uid=20/;section=1.2
 ;urlauth=submit+fred:internal
 :91354a473744909de610943775f92038" {28}
 S: Si vis pacem, para bellum.
 S:
 S: a002 OK URLFETCH completed

9. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [ABNF].

 The following modifications are made to the Formal Syntax in [IMAP]:

resetkey = "RESETKEY" [SP mailbox *(SP mechanism)]

capability =/ "URLAUTH"

command-auth =/ resetkey / genurlauth / urlfetch

resp-text-code =/ "URLMECH" SP "INTERNAL" *(SP mechanism ["=" base64])

genurlauth = "GENURLAUTH" 1*(SP url-rump SP mechanism)

genurlauth-data = "*" SP "GENURLAUTH" 1*(SP url-full)

Crispin Standards Track [Page 13]

RFC 4467 IMAP - URLAUTH Extension May 2006

url-full = astring
 ; contains authimapurlfull as defined below

url-rump = astring
 ; contains authimapurlrump as defined below

urlfetch = "URLFETCH" 1*(SP url-full)

urlfetch-data = "*" SP "URLFETCH" 1*(SP url-full SP nstring)

 The following extensions are made to the Formal Syntax in [IMAPURL]:

authimapurl = "imap://" enc-user [iauth] "@" hostport "/"
 imessagepart
 ; replaces "imapurl" and "iserver" rules for
 ; URLAUTH authorized URLs

authimapurlfull = authimapurl iurlauth

authimapurlrump = authimapurl iurlauth-rump

enc-urlauth = 32*HEXDIG

enc-user = 1*achar
 ; same as "enc_user" in RFC 2192

iurlauth = iurlauth-rump ":" mechanism ":" enc-urlauth

iurlauth-rump = [expire] ";URLAUTH=" access

access = ("submit+" enc-user) / ("user+" enc-user) /
 "authuser" / "anonymous"

expire = ";EXPIRE=" date-time
 ; date-time defined in [DATETIME]

mechanism = "INTERNAL" / 1*(ALPHA / DIGIT / "-" / ".")
 ; case-insensitive
 ; new mechanisms MUST be registered with IANA

Crispin Standards Track [Page 14]

RFC 4467 IMAP - URLAUTH Extension May 2006

10. Security Considerations

 Security considerations are discussed throughout this memo.

 The mailbox access key SHOULD have at least 128 bits of entropy
 (refer to [RANDOM] for more details) and MUST be unpredictable.

 The server implementation of the INTERNAL mechanism SHOULD consider
 the possibility of needing to change the token generation algorithm,
 and SHOULD incorporate some means of identifying the token generation
 algorithm within the token.

 The URLMECH status response code may expose sensitive data in the
 mechanism-specific data for mechanisms other than INTERNAL. A server
 implementation MUST implement a configuration that will not return a
 URLMECH status response code unless some mechanism is provided that
 protects the session from snooping, such as a TLS or SASL security
 layer that provides confidentiality protection.

 The calculation of an authorization token with a "plausible" key if
 the mailbox can not be identified is necessary to avoid attacks in
 which the server is probed to see if a particular mailbox exists on
 the server by measuring the amount of time taken to reject a known
 bad name versus some other name.

 To protect against a computational denial-of-service attack, a server
 MAY impose progressively longer delays on multiple URL requests that
 fail validation.

 The decision to use the "authuser" access identifier should be made
 with caution. An "authuser" access identifier can be used by any
 authorized user of the IMAP server; therefore, use of this access
 identifier should be limited to content that may be disclosed to any
 authorized user of the IMAP server.

 The decision to use the "anonymous" access identifier should be made
 with extreme caution. An "anonymous" access identifier can be used
 by anyone; therefore, use of this access identifier should be limited
 to content that may be disclosed to anyone. Many IMAP servers do not
 permit anonymous access; in this case, the "anonymous" access
 identifier is equivalent to "authuser", but this MUST NOT be relied
 upon.

 Although this specification does not prohibit the theoretical
 capability to generate a URL with a server component other than the
 logged in userid and server, this capability should only be provided

Crispin Standards Track [Page 15]

RFC 4467 IMAP - URLAUTH Extension May 2006

 when the logged in userid/server has been authorized as equivalent to
 the server component userid/server, or otherwise has access to that
 userid/server mailbox access key table.

11. IANA Considerations

 This document constitutes registration of the URLAUTH capability in
 the imap4-capabilities registry.

 URLAUTH authorization mechanisms are registered by publishing a
 standards track or IESG-approved experimental RFC. The registry is
 currently located at:

http://www.iana.org/assignments/urlauth-authorization-mechanism-registry

 This registry is case-insensitive.

 This document constitutes registration of the INTERNAL URLAUTH
 authorization mechanism.

 IMAP URLAUTH Authorization Mechanism Registry

 Mechanism Name Reference
 -------------- ---------
 INTERNAL [RFC4467]

Crispin Standards Track [Page 16]

RFC 4467 IMAP - URLAUTH Extension May 2006

12. Normative References

 [ABNF] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [BURL] Newman, C., "Message Submission BURL Extension", RFC 4468,
 May 2006.

 [DATETIME] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, July 2002.

 [IMAP] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 3501, March 2003.

 [IMAPURL] Newman, C., "IMAP URL Scheme", RFC 2192, September 1997.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

13. Informative References

 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [RANDOM] Eastlake, D., 3rd, Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 June 2005.

Author’s Address

 Mark R. Crispin
 Networks and Distributed Computing
 University of Washington
 4545 15th Avenue NE
 Seattle, WA 98105-4527

 Phone: (206) 543-5762
 EMail: MRC@CAC.Washington.EDU

Crispin Standards Track [Page 17]

RFC 4467 IMAP - URLAUTH Extension May 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

Crispin Standards Track [Page 18]

