
Network Working Group W. Zhao
Request for Comments: 3528 H. Schulzrinne
Category: Experimental Columbia University
 E. Guttman
 Sun Microsystems
 April 2003

 Mesh-enhanced Service Location Protocol (mSLP)

Status of this Memo

 This memo defines an Experimental Protocol for the Internet
 community. It does not specify an Internet standard of any kind.
 Discussion and suggestions for improvement are requested.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes the Mesh-enhanced Service Location Protocol
 (mSLP). mSLP enhances the Service Location Protocol (SLP) with a
 scope-based fully-meshed peering Directory Agent (DA) architecture.
 Peer DAs exchange new service registrations in shared scopes via
 anti-entropy and direct forwarding. mSLP improves the reliability
 and consistency of SLP DA services, and simplifies Service Agent (SA)
 registrations in systems with multiple DAs. mSLP is backward
 compatible with SLPv2 and can be deployed incrementally.

Table of Contents

 1. Introduction . 2
 1.1. Notation Conventions 2
 1.2. Terminology . 3
 1.3. Compatibility . 3
 2. Scope-based Fully-meshed Peering DA Architecture 4
 3. Peer Relationship Management 6
 3.1. Learning about New Peers 6
 3.2. Establishing a Peering Connection 6
 3.3. Exchanging Information about Existing Peers 6
 3.4. Maintaining a Peer Relationship 7
 3.5. Tearing Down a Peer Relationship 7
 4. Registration Propagation Control 7
 4.1. Accept ID and Propagation Order 7
 4.2. Version Timestamp and Registration Version Resolution . 8

Zhao, et al. Experimental [Page 1]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 4.3. Mesh Forwarding Extension 8
 4.4. Summary Vector . 9
 4.5. Service Deregistration 10
 4.6. Anti-entropy Request Message 10
 4.7. Anti-entropy . 11
 4.8. Direct Forwarding 11
 4.9. SrvAck Message . 12
 4.10. Control Information 12
 5. Summary . 12
 6. Protocol Timing Defaults 13
 7. IANA Considerations . 13
 8. Security Considerations 13
 9. Acknowledgments . 13
 10. References . 13
 10.1. Normative References 13
 10.2. Informative References 14
 11. Authors’ Addresses . 14
 12. Full Copyright Statement 15

1. Introduction

 In the Service Location Protocol (SLPv2 [RFC2608]), Directory Agents
 (DAs) accept service registrations from Service Agents (SAs) and
 answer queries from User Agents (UAs); they enhance the performance
 and scalability of SLPv2. The use of scopes in SLPv2 further
 improves its scalability. In general, a DA can serve multiple
 scopes, and a scope can be served by multiple DAs. When multiple DAs
 are present for a scope, how should they interact with each other?
 This document describes the Mesh-enhanced Service Location Protocol
 (mSLP), addressing this open issue in SLPv2.

 mSLP defines a scope-based fully-meshed peering DA architecture: for
 each scope, all DAs serving the scope form a fully-meshed peer
 relationship (similar to IBGP [RFC1771]). Peer DAs exchange new
 service registrations in shared scopes via anti-entropy [EPID-
 ALGO,UPDA-PROP] and direct forwarding. mSLP improves the reliability
 and consistency of SLP DA services, and simplifies SA registrations
 in systems with multiple DAs.

1.1. Notation Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

Zhao, et al. Experimental [Page 2]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

1.2. Terminology

 Peer DAs (or Peers)
 DAs that share one or multiple scopes are peers.

 Peering Connection
 A persistent connection (e.g., TCP) that provides reliable and
 ordered transfers between two peers. The closing of a peering
 connection terminates the peer relationship.

 Mesh-enhanced DA (MDA)
 An MDA carries the "mesh-enhanced" attribute keyword in its DA
 Advertisement (DAAdvert) message, maintains peering connections to
 all peers, and properly interacts with peers.

 Mesh-enhanced SA (MSA)
 An MSA uses the Mesh Forwarding extension (Section 4.3) when it
 registers with MDAs.

 Registration Update
 A registration update refers to a Service Registration (SrvReg) or
 Service Deregistration (SrvDeReg) message.

 Registration State
 A registration state refers to an entry in the registration
 database.

 Accept DA
 When a DA accepts a registration update from an SA, the DA is the
 accept DA for the update.

 Accept Timestamp
 The arrival timestamp of a registration update at its accept DA is
 the accept timestamp of the update. All accept timestamps
 assigned by the same DA MUST be monotonically increasing.

 Version Timestamp
 When an MSA sends a registration update to an MDA, the MSA assigns
 a version timestamp to the update. All version timestamps
 assigned by the same MSA MUST be monotonically increasing.

1.3. Compatibility

 mSLP is designed as a lightweight enhancement to SLPv2. It is
 backward compatible with SLPv2. mSLP defines two enhanced entities:
 MDAs and MSAs. They can be deployed incrementally. An enhanced
 entity supports extended operations without affecting its original
 functionality as defined in RFC 2608 [RFC2608]. For simplicity and

Zhao, et al. Experimental [Page 3]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 compatibility, an enhanced entity works as a non-enhanced entity to
 interact with non-enhanced entities. Table 1 summarizes all
 interactions involving an MDA or MSA.

 Interaction Equivalent To Defined In
 --
 MDA <--> MDA mSLP
 MDA <--> MSA mSLP
 MDA <--> DA DA <--> DA RFC 2608
 MDA <--> SA DA <--> SA RFC 2608
 MDA <--> UA DA <--> UA RFC 2608
 MSA <--> DA SA <--> DA RFC 2608
 MSA <--> UA SA <--> UA RFC 2608

 Table 1. Interactions involving an MDA or MSA

2. Scope-based Fully-meshed Peering DA Architecture

 (x,y)
 +--+
 | +------------+ |
 | | MDA4 (z) | |
 | +------------+ |
 | | (z) |
 +------------+ (y) +------------+ (y) +------------+
 | MDA1 (x,y) | ---------- | MDA3 (y,z) | ---------- | MDA2 (x,y) |
 +------------+ +------------+ +------------+

 Figure 1. A scope-based fully-meshed peering DA architecture

 mSLP employs a scope-based fully-meshed peering DA architecture. For
 each scope, all MDAs that serve the scope form a fully-meshed peer
 relationship. Figure 1 shows an example for four MDAs and three
 scopes (x, y, and z). Note that a single peering connection is
 needed between two peers for exchanging all service registrations in
 their shared scopes.

 This architecture enhances SLP DA services. First, it improves the
 consistency among peer DAs by automatically reconciling inconsistent
 states among them. Second, it enables newly booted and rebooted MDAs
 to catch up on all new registrations at once from their peers, purely
 through DA interaction, without involving SAs.

 This architecture also simplifies SA registrations. In SLPv2, an SA
 needs to discover and register with all existing DAs in its scopes,
 and re-register when new DAs are discovered or old DAs are found to
 have rebooted. In mSLP, for all MDAs, an MSA only needs to discover
 and register with a sufficient number of them, such that the union of

Zhao, et al. Experimental [Page 4]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 their scopes covers its scopes; the registrations will then be
 propagated automatically to other MDAs in the registration scopes.
 For example, in Figure 2, MSA1 only needs to discover and register
 with MDA2, or with both MDA1 and MDA3.

 (option2) +------------+ (option2)
 +----------------- | MSA1 (x,y) | -----------------+
 | +------------+ |
 | | (option1) |
 V V V
 +----------+ +------------+ +----------+
 | MDA1 (x) | ----------- | MDA2 (x,y) | ----------- | MDA3 (y) |
 +----------+ +------------+ +----------+

 Figure 2. Options for registering with MDAs

 Furthermore, this architecture provides scaling advantages. Consider
 a scope that has N SAs and M DAs, and assume N > M >= 2. Although
 mSLP and SLPv2 need the same number of SLP messages to distribute
 registrations from N SAs to M DAs, mSLP can reduce the number of
 agents needed for taking care of registration distribution, and
 reduce the number of TCP connections needed if each SA uses TCP for
 its registrations. More specifically, the agents that need to take
 care of registration distribution are all N SAs in SLPv2, but only M
 DAs in mSLP. Also, the number of needed TCP connections is N*M in
 SLPv2 as each SA has to connect with each DA and register, but only
 N+M*(M-1)/2 in mSLP as each SA only needs to connect to one
 contacting DA of a full mesh of M node and register, then
 registrations are propagated through the DA mesh. For N=100 and
 M=10, SLPv2 needs 1000 TCP connections, but mSLP only needs 145 such
 connections.

 Note that as mSLP employs full-mesh topology, which is mainly for
 simplicity and reliability, it cannot scale to a large number of MDAs
 in a single mesh. In general, mSLP can be applied if the number of
 MDAs in a mesh is on the order of tens or below. One way to avoid
 having a large number of MDAs in a mesh is to split the scope into
 several finer scopes. For example, if we have N MDAs for scope "x",
 and N is too large, then we can split "x" into two finer scopes:
 "x-1" and "x-2", with N1 MDAs for "x-1" only, N2 MDAs for "x-2" only,
 N3 MDAs for both "x-1" and "x-2", and N1+N2+N3=N. Thus, instead of
 having a large full mesh of size N, we now have two smaller full
 meshes of size N1+N3 and N2+N3, respectively. Accordingly, a service
 registration that previously targets for scope "x", now needs to be
 registered under both "x-1" and "x-2".

Zhao, et al. Experimental [Page 5]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

3. Peer Relationship Management

3.1. Learning about New Peers

 An MDA can learn about new peers via static configuration, DHCP
 [RFC2610], and DAAdvert multicast and unicast. In any case, an MDA
 MUST get a peer’s DAAdvert before establishing a peer relationship to
 the peer.

3.2. Establishing a Peering Connection

 After getting a new peer’s DAAdvert, an MDA establishes a peering
 connection (if such a connection does not exist yet) to the peer, and
 sends its DAAdvert via the connection (Figure 3). An MDA can
 identify a peering connection initiated by a peer by receiving the
 peer’s DAAdvert from the connection. Normally, a single peering
 connection is set up between two peers, but there is a small
 possibility that a pair of peering connections might be created
 between two peers if they try to initiate a connection to each other
 at almost the same time. Thus, when an MDA identifies a new peering
 connection initiated by a peer, it SHOULD check whether it has
 initiated another peering connection to the peer. If this is the
 case, and it has a lower-numbered IP address than the peer, then the
 MDA SHOULD terminate the connection it has initiated.

 +------+ (1) MDA2’s DAAdvert | +------+
 | | <----------------------+ | |
 | MDA1 | (2) Create a Peering Connection | MDA2 |
 | | ---------------------------------------> | |
 +------+ (3) MDA1’s DAAdvert +------+

 Figure 3. Establishing a peering connection

3.3. Exchanging Information about Existing Peers

 After establishing a peering connection, two peers (say, MDA1 and
 MDA2) exchange information about their existing peers by forwarding
 peers’ DAAdverts via the peering connection (Figure 4). MDA1 will
 forward the DAAdvert of a peer (say, MDA3) to MDA2 if:

 (1) MDA3 shares scopes with MDA2, and
 (2) MDA3 is an active peer of MDA1 (i.e., there is a peering
 connection between MDA3 and MDA1) or an accept DA for
 registrations currently maintained by MDA1 (i.e., MDA1
 has registrations originally accepted by MDA3).

Zhao, et al. Experimental [Page 6]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 MDA2 operates similarly. Note that all DAAdverts can be sent as one
 TCP stream for efficiency. Exchanging information about existing
 peers enables an MDA to learn about new peers incrementally.

 +------+ DAAdverts of MDA1’s existing peers +------+
 | | --> | |
 | MDA1 | (Peering Connection) | MDA2 |
 | | <-- | |
 +------+ DAAdverts of MDA2’s existing peers +------+

 Figure 4. Exchanging information about existing peers

3.4. Maintaining a Peer Relationship

 +------+ MDA1’s DAAdvert +------+
 | | ---------------------------------------> | |
 | MDA1 | (Peering Connection) | MDA2 |
 | | <--------------------------------------- | |
 +------+ MDA2’s DAAdvert +------+

 Figure 5. Maintaining a peer relationship

 To detect failures (network partitions and peer crashes), mSLP uses a
 heart-beat mechanism. An MDA sends its DAAdvert to peers (Figure 5)
 every CONFIG_DA_KEEPALIVE seconds. The timeout value for this
 message is CONFIG_DA_TIMEOUT seconds (Section 6).

3.5. Tearing Down a Peer Relationship

 An MDA SHOULD tear down a peer relationship when it finds that the
 peer has closed the peering connection, when it receives a DAAdvert
 multicast from the peer with a DA stateless boot timestamp set to 0
 (meaning that the peer is going to shutdown), or when it has not
 received the peer’s DAAdvert for more than CONFIG_DA_TIMEOUT seconds.

4. Registration Propagation Control

4.1. Accept ID and Propagation Order

 When an MDA accepts a registration update from an MSA, the MDA
 assigns a unique accept ID to the update. An accept ID has two
 components: an accept DA URL and an accept timestamp. The accept
 timestamp is a 64-bit integer representing elapsed microseconds since
 00:00 Coordinated Universal Time (UTC), January 1, 1900. Figure 6
 shows the format for an accept ID entry. A registration state has
 the same accept ID as that of the latest update applied to it.

Zhao, et al. Experimental [Page 7]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept Timestamp |
 +-+
 | Accept Timestamp, cont’d. |
 +-+
 | Length of Accept DA URL | Accept DA URL \
 +-+

 Figure 6. Accept ID entry

 An MDA MUST propagate registrations in the increasing order of their
 accept IDs, i.e., registrations having the same accept DA MUST be
 propagated in the increasing order of their accept timestamps. Note
 that registrations having different accept DAs MAY be propagated in
 any order.

4.2. Version Timestamp and Registration Version Resolution

 When registrations are propagated among MDAs, their arrival
 timestamps at MDAs cannot be used for version resolution. For
 example, assume that MSA1 sends a registration (R1) to MDA1 first,
 and a new version of the same registration (R2) to MDA2 later. When
 R1 and R2 are propagated, the arrival timestamp of R1 at MDA2 is
 later than that of R2, but R1 SHOULD NOT overwrite R2 at MDA2 as R2
 is a newer version.

 mSLP resolves registration versions using version timestamps. When
 an MSA sends a registration update to an MDA, the MSA assigns a
 version timestamp to the update. The version timestamp is a 64-bit
 integer representing elapsed microseconds since 00:00 UTC, January 1,
 1900. mSLP assumes that each registration is updated only by one SA,
 thus an MDA does not need to compare version timestamps from
 different MSAs. An MDA installs a registration update if the update
 has a newer version timestamp (from an MSA), or the update does not
 have the Mesh Forwarding extension (from a non-MSA).

4.3. Mesh Forwarding Extension

 The Mesh Forwarding (MeshFwd) extension carries a version timestamp
 and an accept ID entry. Figure 7 shows its format and two defined
 Forwarding IDs (Fwd-IDs).

 The MeshFwd extension is used with a Srv(De)Reg message, but it can
 only be used with a fresh SrvReg, or a complete SrvDeReg.

Zhao, et al. Experimental [Page 8]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | MeshFwd Extension ID = 0x0006 | Next Extension Offset (NEO) |
 +-+
 | NEO, cont’d. | Fwd-ID | Version Timestamp |
 +-+
 | Version Timestamp, cont’d. |
 +-+
 | Version Timestamp, cont’d. | Accept ID Entry \
 +-+

 Fwd-ID Abbreviation
 1 RqstFwd
 2 Fwded

 Figure 7. MeshFwd extension and its Fwd-IDs

 An MSA uses the RqstFwd MeshFwd extension (Fwd-ID = RqstFwd, accept
 timestamp = 0) in a Srv(De)Reg to explicitly request an MDA (the
 accept DA) to forward the message.

 An MDA uses the Fwded MeshFwd extension (Fwd-ID = Fwded, accept
 timestamp != 0) in each Srv(De)Reg sent from it to another MDA,
 either forwarding a Srv(De)Reg received from an MSA (if the message
 has the RqstFwd MeshFwd extension), or propagating a registration
 state in its database.

4.4. Summary Vector

 An MDA uses a summary vector to represent its received Srv(De)Reg(s)
 that have a MeshFwd extension. This summary vector records the
 latest accept timestamp for each accept DA that appears in the
 MeshFwd extension. For example, consider n MDAs for a scope, if MDAi
 has a summary vector as ((MDA1, T1), (MDA2, T2), ..., (MDAn, Tn)),
 then MDAi has received all registrations originally accepted by MDAj
 up to timestamp Tj, where 1<=i,j<=n.

 An MDA updates its summary vector when it receives a Srv(De)Reg that
 has a MeshFwd extension. The MDA adds a new accept ID to its summary
 vector if the Srv(De)Reg has a new accept DA; the MDA updates the
 accept timestamp of an existing accept ID in its summary vector if
 the Srv(De)Reg has an existing accept DA.

Zhao, et al. Experimental [Page 9]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

4.5. Service Deregistration

 When an MDA receives a SrvDeReg that has a MeshFwd extension, it
 SHOULD retain the corresponding registration in the database, and
 mark it as deleted. This way, the registration will not appear in
 any query reply, and an earlier SrvReg will not mistakenly cause the
 registration to reappear in the database. A registration state will
 be purged from the database when it expires.

4.6. Anti-entropy Request Message

 The Anti-entropy Request (AntiEtrpRqst) message carries an anti-
 entropy type ID and a list of accept ID entries. Figure 8 shows its
 format and two defined anti-entropy type IDs.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Service Location Header (AntiEtrpRqst Function-ID = 12) |
 +-+
 | Anti-Entropy Type ID | Number of Accept ID Entries |
 +-+
 | Accept ID Entry 1 . . . Accept ID Entry k \
 +-+

 Anti-Entropy Type Type ID
 selective 1
 complete 2

 Figure 8. AntiEtrpRqst message and anti-entropy types

 The AntiEtrpRqst message is used by an MDA to request new
 registration states from a peer. The anti-entropy type is either
 selective or complete. If the anti-entropy type is selective, only
 registration states that have an accept ID greater than any specified
 accept ID in the message are requested. If the anti-entropy type is
 complete, all registration states that have an accept ID greater than
 any specified accept ID in the message or have an accept DA not
 specified in the message are requested.

 For example, consider three MDAs (MDA1, MDA2, and MDA3) for a scope.
 MDA2 has registration states originally accepted by MDA1, MDA2, and
 MDA3. If MDA1 sends a selective AntiEtrpRqst to MDA2 using an accept
 ID list as ((MDA2, T2)), then MDA1 only requests registration states
 that are originally accepted by MDA2, and have an accept timestamp
 greater than T2. If MDA1 sends a complete AntiEtrpRqst to MDA2 using
 an accept ID list as ((MDA2, T2)), then MDA1 requests all

Zhao, et al. Experimental [Page 10]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

 registration states originally accepted by MDA1 and MDA3, plus those
 originally accepted by MDA2 and having an accept timestamp greater
 than T2.

4.7. Anti-entropy

 Anti-entropy is used for exchanging initial registration states when
 two peers recognize each other for the first time, and for updating
 new registration states after failures.

 When an MDA receives an AntiEtrpRqst from a peer, it sends the
 requested new registration states in the increasing order of their
 accept IDs. At last a Service Acknowledgment (SrvAck) message is
 sent to indicate that the processing of a corresponding AntiEtrpRqst
 has been completed (Figure 9). A new registration state is sent as a
 fresh SrvReg with its remaining lifetime. A newly deregistered state
 is propagated as a SrvDeReg. Note that multiple Srv(De)Reg(s) can be
 sent as one TCP stream for efficiency.

 +------+ AntiEtrpRqst +------+
 | | ---> | |
 | MDA1 | (Peering Connection) | MDA2 |
 | | <--- | |
 +------+ New States via Srv(De)Reg(s) + SrvAck +------+

 Figure 9. Anti-entropy via AntiEtrpRqst, Srv(De)Reg(s) and SrvAck

4.8. Direct Forwarding

+------+ RqstFwd Srv(De)Reg +------+ Fwded Srv(De)Reg +------+
	--------------------->		-------------------->	
MSA1		MDA1		MDA2
	<---------------------			
+------+ SrvAck +------+ +------+

 Figure 10. Direct forwarding of a Srv(De)Reg

 After sending all new registration states accepted by itself to a
 peer (via anti-entropy), an MDA directly forwards newly received
 registration updates from MSAs to the peer until a failure occurs.

 In Figure 10, when a Srv(De)Reg is directly forwarded from MDA1 to
 MDA2, its Fwd-ID is set to Fwded, and its accept timestamp is set to
 its arrival timestamp at MDA1. Note that a direct forwarding is
 performed asynchronously: MDA1 can send a SrvAck to MSA1 before it
 forwards the Srv(De)Reg to MDA2. Also note that the direct
 forwarding of a Srv(De)Reg goes only one-hop from its accept DA (say,
 MDA1) to all MDA1’s peers that are in the registration scopes.

Zhao, et al. Experimental [Page 11]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

4.9. SrvAck Message

 According to [RFC2608], a DA MUST reply with a SrvAck to a Srv(De)Reg
 when the message is received from an SA. However, an MDA SHOULD NOT
 reply with a SrvAck to a Srv(De)Reg if the message is received from a
 peer. This is for efficiency because peers exchange Srv(De)Reg
 messages via reliable peering connections. Note that an MDA MUST
 reply with a SrvAck to an AntiEtrpRqst.

4.10. Control Information

 For each registration entry, an MDA maintains the following control
 information: an accept ID (for registration propagation), a version
 timestamp (for registration version resolution - rejecting previous
 updates), and a deletion flag (deregistered or not).

 For all registration entries, an MDA maintains a summary vector to
 reflect its received registrations so far.

5. Summary

 mSLP extends SLPv2 with three new definitions: a new attribute -
 "mesh-enhanced" for DAAdvert, a new message extension - MeshFwd, and
 a new message type - AntiEtrpRqst.

 A UA MAY prefer an MDA to a non-MDA since an MDA is more likely to
 reliably contain the complete set of current service registrations
 for the UA’s scopes.

 A non-MSA needs to discover and register with all DAs in its scopes.
 It does not use the MeshFwd extension.

 A non-MDA accepts Srv(De)Reg(s) from SAs. It does not forward them.

 For all MDAs, an MSA only needs to discover and register with
 sufficient number of them, such that they cover its scopes. It uses
 the MeshFwd extension when it registers with MDAs.

 An MDA carries the "mesh-enhanced" attribute keyword in its DAAdvert.
 It maintains a peer relationship to each peer. It accepts
 registrations from SAs and peers, propagates registrations via anti-
 entropy and direct forwarding to peers.

Zhao, et al. Experimental [Page 12]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

6. Protocol Timing Defaults

 Interval Name Default Value Defined in
 ------------------- ------------- -----------
 CONFIG_DA_KEEPALIVE 200 seconds Section 3.4
 CONFIG_DA_TIMEOUT 300 seconds Section 3.4

7. IANA Considerations

 The Mesh Forwarding (MeshFwd) extension ID, 0x0006, described in
 Section 4.3, has been assigned by IANA out of the SLP extension space
 (RFC 2608, Section 9.1) reserved for "optional to implement"
 extensions (i.e., the 0x0000-0x3FFF range).

 The function-ID of the Anti-entropy Request (AntiEtrpRqst) message
 type, 12, described in Section 4.6, has been assigned by IANA (RFC
 2608, Section 15).

8. Security Considerations

 mSLP uses standard SLPv2 authentication. First, an MDA SHOULD
 authenticate other MDAs before setting up a peer relationship with
 them so as to prevent any malicious MDA from joining the DA mesh.
 Second, as a successful attack at an MDA may affect all MDAs in the
 DA mesh, an MDA SHOULD authenticate MSAs before accepting and
 forwarding their Srv(De)Reg messages to prevent illegitimate
 modification or elimination of service registrations. Third, as an
 MSA depends on the MDA with which it registers to forward its
 Srv(De)Reg messages, it SHOULD authenticate the MDA to avoid using a
 malicious MDA.

9. Acknowledgments

 Thomas Narten, James Kempf, Mike Day, Mikael Pahmp, Ira McDonald,
 Qiaobing Xie and Xingang Guo provided valuable comments for this
 document.

10. References

10.1. Normative References

 [RFC2608] Guttman, E., Perkins, C., Veizades, J. and M. Day,
 "Service Location Protocol, Version 2", RFC 2608, June
 1999.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Zhao, et al. Experimental [Page 13]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

10.2. Informative References

 [RFC1771] Rekhter, R. and T. Li, "A Border Gateway Protocol 4
 (BGP-4)", RFC 1771, March 1995.

 [RFC2610] Perkins, C. and E. Guttman, "DHCP Options for Service
 Location Protocol", RFC 2610, June, 1999.

 [EPID-ALGO] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S.
 Shenker, H. Sturgis, D. Swinehart and D. Terry, "Epidemic
 algorithms for replicated database maintenance", the
 sixth ACM symposium on principles of distributed
 computing, Vancouver, Canada, 1987.

 [UPDA-PROP] K. Petersen, M. Spreizer, D. Terry, M. Theimer and A.
 Demers, "Flexible update propagation for weakly
 consistent replication", the sixteenth ACM symposium on
 operating systems principles, Saint Malo, France, 1997.

11. Authors’ Addresses

 Weibin Zhao
 Department of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027-7003

 EMail: zwb@cs.columbia.edu

 Henning Schulzrinne
 Department of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027-7003

 EMail: hgs@cs.columbia.edu

 Erik Guttman
 Sun Microsystems
 Eichhoelzelstr. 7
 74915 Waibstadt
 Germany

 EMail: Erik.Guttman@sun.com

Zhao, et al. Experimental [Page 14]

RFC 3528 Mesh-enhanced Service Location Protocol (mSLP) April 2003

12. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Zhao, et al. Experimental [Page 15]

