
Network Working Group M. Luby
Request for Comments: 3453 Digital Fountain
Category: Informational L. Vicisano
 Cisco
 J. Gemmell
 Microsoft
 L. Rizzo
 Univ. Pisa
 M. Handley
 ICIR
 J. Crowcroft
 Cambridge Univ.
 December 2002

 The Use of Forward Error Correction (FEC) in Reliable Multicast

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 This memo describes the use of Forward Error Correction (FEC) codes
 to efficiently provide and/or augment reliability for one-to-many
 reliable data transport using IP multicast. One of the key
 properties of FEC codes in this context is the ability to use the
 same packets containing FEC data to simultaneously repair different
 packet loss patterns at multiple receivers. Different classes of FEC
 codes and some of their basic properties are described and
 terminology relevant to implementing FEC in a reliable multicast
 protocol is introduced. Examples are provided of possible abstract
 formats for packets carrying FEC.

Luby, et. al. Informational [Page 1]

RFC 3453 FEC in Reliable Multicast December 2002

Table of Contents

 1. Rationale and Overview . 2
 1.1. Application of FEC codes 5
 2. FEC Codes. 6
 2.1. Simple codes . 6
 2.2. Small block FEC codes. 8
 2.3. Large block FEC codes. 10
 2.4. Expandable FEC codes 11
 2.5. Source blocks with variable length source symbols. 13
 3. Security Considerations. 14
 4. Intellectual Property Disclosure 14
 5. Acknowledgments. 15
 6. References . 15
 7. Authors’ Addresses . 17
 8. Full Copyright Statement 18

1. Rationale and Overview

 There are many ways to provide reliability for transmission
 protocols. A common method is to use ARQ, automatic request for
 retransmission. With ARQ, receivers use a back channel to the sender
 to send requests for retransmission of lost packets. ARQ works well
 for one-to-one reliable protocols, as evidenced by the pervasive
 success of TCP/IP. ARQ has also been an effective reliability tool
 for one-to-many reliability protocols, and in particular for some
 reliable IP multicast protocols. However, for one-to-very-many
 reliability protocols, ARQ has limitations, including the feedback
 implosion problem because many receivers are transmitting back to the
 sender, and the need for a back channel to send these requests from
 the receiver. Another limitation is that receivers may experience
 different loss patterns of packets, and thus receivers may be delayed
 by retransmission of packets that other receivers have lost that but
 they have already received. This may also cause wasteful use of
 bandwidth used to retransmit packets that have already been received
 by many of the receivers.

 In environments where ARQ is either costly or impossible because
 there is either a very limited capacity back channel or no back
 channel at all, such as satellite transmission, a Data Carousel
 approach to reliability is sometimes used [1]. With a Data Carousel,
 the sender partitions the object into equal length pieces of data,
 which we hereafter call source symbols, places them into packets, and
 then continually cycles through and sends these packets. Receivers
 continually receive packets until they have received a copy of each
 packet. Data Carousel has the advantage that it requires no back
 channel because there is no data that flows from receivers to the
 sender. However, Data Carousel also has limitations. For example,

Luby, et. al. Informational [Page 2]

RFC 3453 FEC in Reliable Multicast December 2002

 if a receiver loses a packet in one round of transmission it must
 wait an entire round before it has a chance to receive that packet
 again. This may also cause wasteful use of bandwidth, as the sender
 continually cycles through and transmits the packets until no
 receiver is missing a packet.

 Forward Error Correction (FEC) codes provide a reliability method
 that can be used to augment or replace other reliability methods,
 especially for one-to-many reliability protocols such as reliable IP
 multicast. We first briefly review some of the basic properties and
 types of FEC codes before reviewing their uses in the context of
 reliable IP multicast. Later, we provide a more detailed description
 of some of FEC codes.

 In the general literature, FEC refers to the ability to overcome both
 erasures (losses) and bit-level corruption. However, in the case of
 an IP multicast protocol, the network layers will detect corrupted
 packets and discard them or the transport layers can use packet
 authentication to discard corrupted packets. Therefore the primary
 application of FEC codes to IP multicast protocols is as an erasure
 code. The payloads are generated and processed using an FEC erasure
 encoder and objects are reassembled from reception of packets
 containing the generated encoding using the corresponding FEC erasure
 decoder.

 The input to an FEC encoder is some number k of equal length source
 symbols. The FEC encoder generates some number of encoding symbols
 that are of the same length as the source symbols. The chosen length
 of the symbols can vary upon each application of the FEC encoder, or
 it can be fixed. These encoding symbols are placed into packets for
 transmission. The number of encoding symbols placed into each packet
 can vary on a per packet basis, or a fixed number of symbols (often
 one) can be placed into each packet. Also, in each packet is placed
 enough information to identify the particular encoding symbols
 carried in that packet. Upon receipt of packets containing encoding
 symbols, the receiver feeds these encoding symbols into the
 corresponding FEC decoder to recreate an exact copy of the k source
 symbols. Ideally, the FEC decoder can recreate an exact copy from
 any k of the encoding symbols.

 In a later section, we describe a technique for using FEC codes as
 described above to handle blocks with variable length source symbols.

 Block FEC codes work as follows. The input to a block FEC encoder is
 k source symbols and a number n. The encoder generates a total of n
 encoding symbols. The encoder is systematic if it generates n-k
 redundant symbols yielding an encoding block of n encoding symbols in
 total composed of the k source symbols and the n-k redundant symbols.

Luby, et. al. Informational [Page 3]

RFC 3453 FEC in Reliable Multicast December 2002

 A block FEC decoder has the property that any k of the n encoding
 symbols in the encoding block is sufficient to reconstruct the
 original k source symbols.

 Expandable FEC codes work as follows. An expandable FEC encoder
 takes as input k source symbols and generates as many unique encoding
 symbols as requested on demand, where the amount of time for
 generating each encoding symbol is the same independent of how many
 encoding symbols are generated. An expandable FEC decoder has the
 property that any k of the unique encoding symbols is sufficient to
 reconstruct the original k source symbols.

 The above definitions explain the ideal situation when the reception
 of any k encoding symbols is sufficient to recover the k source
 symbols, in which case the reception overhead is 0%. For some
 practical FEC codes, slightly more than k encoding symbols are needed
 to recover the k source symbols. If k*(1+ep) encoding symbols are
 needed, we say the reception overhead is ep*100%, e.g., if k*1.05
 encoding symbols are needed then the reception overhead is 5%.

 Along a different dimension, we classify FEC codes loosely as being
 either small or large. A small FEC code is efficient in terms of
 processing time requirements for encoding and decoding for small
 values of k, and a large FEC code is efficient for encoding and
 decoding for much large values of k. There are implementations of
 block FEC codes that have encoding times proportional to n-k times
 the length of the k source symbols, and decoding times proportional
 to l times the length of the k source symbols, where l is the number
 of missing source symbols among the k received encoding symbols and l
 can be as large as k. Because of the growth rate of the encoding and
 decoding times as a product of k and n-k, these are typically
 considered to be small block FEC codes. There are block FEC codes
 with a small reception overhead that can generate n encoding symbols
 and can decode the k source symbols in time proportional to the
 length of the n encoding symbols. These codes are considered to be
 large block FEC codes. There are expandable FEC codes with a small
 reception overhead that can generate each encoding symbol in time
 roughly proportional to its length, and can decode all k source
 symbols in time roughly proportional to their length. These are
 considered to be large expandable FEC codes. We describe examples of
 all of these types of codes later.

 Ideally, FEC codes in the context of IP multicast can be used to
 generate encoding symbols that are transmitted in packets in such a
 way that each received packet is fully useful to a receiver to
 reassemble the object regardless of previous packet reception
 patterns. Thus, if some packets are lost in transit between the
 sender and the receiver, instead of asking for specific

Luby, et. al. Informational [Page 4]

RFC 3453 FEC in Reliable Multicast December 2002

 retransmission of the lost packets or waiting till the packets are
 resent using Data Carousel, the receiver can use any other subsequent
 equal number of packets that arrive to reassemble the object. These
 packets can either be proactively transmitted or they can be
 explicitly requested by receivers. This implies that the same packet
 is fully useful to all receivers to reassemble the object, even
 though the receivers may have previously experienced different packet
 loss patterns. This property can reduce or even eliminate the
 problems mentioned above associated with ARQ and Data Carousel and
 thereby dramatically increase the scalability of the protocol to
 orders of magnitude more receivers.

1.1. Application of FEC codes

 For some reliable IP multicast protocols, FEC codes are used in
 conjunction with ARQ to provide reliability. For example, a large
 object could be partitioned into a number of source blocks consisting
 of a small number of source symbols each, and in a first round of
 transmission all of the source symbols for all the source blocks
 could be transmitted. Then, receivers could report back to the
 sender the number of source symbols they are missing from each source
 block. The sender could then compute the maximum number of missing
 source symbols from each source block among all receivers. Based on
 this, a small block FEC encoder could be used to generate for each
 source block a number of redundant symbols equal to the computed
 maximum number of missing source symbols from the block among all
 receivers, as long as this maximum maximum for each block does not
 exceed the number of redundant symbols that can be generated
 efficiently. In a second round of transmission, the server would
 then send all of these redundant symbols for all blocks. In this
 example, if there are no losses in the second round of transmission
 then all receivers will be able to recreate an exact copy of each
 original block. In this case, even if different receivers are
 missing different symbols in different blocks, transmitted redundant
 symbols for a given block are useful to all receivers missing symbols
 from that block in the second round.

 For other reliable IP multicast protocols, FEC codes are used in a
 Data Carousel fashion to provide reliability, which we call an FEC
 Data Carousel. For example, an FEC Data Carousel using a large block
 FEC code could work as follows. The large block FEC encoder produces
 n encoding symbols considering all the k source symbols of an object
 as one block. The sender cycles through and transmits the n encoding
 symbols in packets in the same order in each round. An FEC Data
 Carousel can have much better protection against packet loss than a
 Data Carousel. For example, a receiver can join the transmission at
 any point in time, and, as long as the receiver receives at least k
 encoding symbols during the transmission of the next n encoding

Luby, et. al. Informational [Page 5]

RFC 3453 FEC in Reliable Multicast December 2002

 symbols, the receiver can completely recover the object. This is
 true even if the receiver starts receiving packets in the middle of a
 pass through the encoding symbols. This method can also be used when
 the object is partitioned into blocks and a short block FEC code is
 applied to each block separately. In this case, as we explain in
 more detail below, it is useful to interleave the symbols from the
 different blocks when they are transmitted.

 Since any number of encoding symbols can be generated using an
 expandable FEC encoder, reliable IP multicast protocols that use
 expandable FEC codes generally rely solely on these codes for
 reliability. For example, when an expandable FEC code is used in a
 FEC Data Carousel application, the encoding packets never repeat, and
 thus any k of the encoding symbols in the potentially unbounded
 number of encoding symbols are sufficient to recover the original k
 source symbols.

 For additional reliable IP multicast protocols, the method to obtain
 reliability is to generate enough encoding symbols so that each
 encoding symbol is transmitted only once (at most). For example, the
 sender can decide a priori how many encoding symbols it will
 transmit, use an FEC code to generate that number of encoding symbols
 from the object, and then transmit the encoding symbols to all
 receivers. This method is applicable to streaming protocols, for
 example, where the stream is partitioned into objects, the source
 symbols for each object are encoded into encoding symbols using an
 FEC code, and then the sets of encoding symbols for each object are
 transmitted one after the other using IP multicast.

2. FEC Codes

2.1. Simple codes

 There are some very simple codes that are effective for repairing
 packet loss under very low loss conditions. For example, to provide
 protection from a single loss is to partition the object into fixed
 size source symbols and then add a redundant symbol that is the
 parity (XOR) of all the source symbols. The size of a source symbol
 is chosen so that it fits perfectly into the payload of a packet,
 i.e. if the packet payload is 512 bytes then each source symbol is
 512 bytes. The header of each packet contains enough information to
 identify the payload. This is an example of encoding symbol ID. The
 encoding symbol IDs can consist of two parts in this example. The
 first part is an encoding flag that is equal to 1 if the encoding
 symbol is a source symbol and is equal to 0 if the encoding symbol is
 a redundant symbol. The second part of the encoding symbol ID is a
 source symbol ID if the encoding flag is 1 and a redundant symbol ID
 if the encoding flag is 0. The source symbol IDs can be numbered

Luby, et. al. Informational [Page 6]

RFC 3453 FEC in Reliable Multicast December 2002

 from 0 to k-1 and the redundant symbol ID can be 0. For example, if
 the object consists of four source symbols that have values a, b, c
 and d, then the value of the redundant symbol is e = a XOR b XOR c
 XOR d. Then, the packets carrying these symbols look like:

 (1, 0: a), (1, 1: b), (1, 2: c), (1, 3: d), (0, 0: e).

 In this example, the encoding symbol ID consists of the first two
 values, where the first value is the encoding flag and the second
 value is either a source symbol ID or the redundant symbol ID. The
 portion of the packet after the colon is the value of the encoding
 symbol. Any single source symbol of the object can be recovered as
 the parity of all the other symbols. For example, if packets

 (1, 0: a), (1, 1: b), (1, 3: d), (0, 0: e)

 are received then the missing source symbol value with source symbol
 ID = 2 can be recovered by computing a XOR b XOR d XOR e = c.

 Another way of forming the encoding symbol ID is to let values
 0,...,k-1 correspond to the k source symbols and value k correspond
 to the redundant symbol that is the XOR of the k source symbols.

 When the number of source symbols in the object is large, a simple
 block code variant of the above can be used. In this case, the
 source symbols are grouped together into source blocks of some number
 k of consecutive symbols each, where k may be different for different
 blocks. If a block consists of k source symbols then a redundant
 symbol is added to form an encoding block consisting of k+1 encoding
 symbols. Then, a source block consisting of k source symbols can be
 recovered from any k of the k+1 encoding symbols from the associated
 encoding block.

 Slightly more sophisticated ways of adding redundant symbols using
 parity can also be used. For example, one can group a block
 consisting of k source symbols in an object into a p x p square
 matrix, where p = sqrt(k). Then, for each row a redundant symbol is
 added that is the parity of all the source symbols in the row.
 Similarly, for each column a redundant symbol is added that is the
 parity of all the source symbols in the column. Then, any row of the
 matrix can be recovered from any p of the p+1 symbols in the row, and
 similarly for any column. Higher dimensional product codes using
 this technique can also be used. However, one must be wary of using
 these constructions without some thought towards the possible loss
 patterns of symbols. Ideally, the property that one would like to
 obtain is that if k source symbols are encoded into n encoding
 symbols (the encoding symbols consist of the source symbols and the
 redundant symbols) then the k source symbols can be recovered from

Luby, et. al. Informational [Page 7]

RFC 3453 FEC in Reliable Multicast December 2002

 any k of the n encoding symbols. Using the simple constructions
 described above does not yield codes that come close to obtaining
 this ideal behavior.

2.2. Small block FEC codes

 Reliable IP multicast protocols may use a block (n, k) FEC code [2].
 For such codes, k source symbols are encoded into n > k encoding
 symbols, such that any k of the encoding symbols can be used to
 reassemble the original k source symbols. Thus, these codes have no
 reception overhead when used to encode the entire object directly.
 Block codes are usually systematic, which means that the n encoding
 symbols consist of the k source symbols and n-k redundant symbols
 generated from these k source symbols, where the size of a redundant
 symbol is the same as that for a source symbol. For example, the
 first simple code (XOR) described in the previous subsection is a
 (k+1, k) code. In general, the freedom to choose n larger than k+1
 is desirable, as this can provide much better protection against
 losses. A popular example of these types of codes is a class of
 Reed-Solomon codes, which are based on algebraic methods using finite
 fields. Implementations of (n, k) FEC erasure codes are efficient
 enough to be used by personal computers [16]. For example, [15]
 describes an implementation where the encoding and decoding speeds
 decay as C/j, where the constant C is on the order of 10 to 80
 Mbytes/second for Pentium class machines of various vintages and j is
 upper bounded by min(k, n-k).

 In practice, the values of k and n must be small (for example below
 256) for such FEC codes as large values make encoding and decoding
 prohibitively expensive. As many objects are longer than k symbols
 for reasonable values of k and the symbol length (e.g. larger than 16
 kilobyte for k = 16 using 1 kilobyte symbols), they can be divided
 into a number of source blocks. Each source block consists of some
 number k of source symbols, where k may vary between different source
 blocks. The FEC encoder is used to encode a k source symbol source
 block into a n encoding symbol encoding block, where the number n of
 encoding symbols in the encoding block may vary for each source
 block. For a receiver to completely recover the object, for each
 source block consisting of k source symbols, k distinct encoding
 symbols (i.e., with different encoding symbol IDs) must be received
 from the corresponding encoding block. For some encoding blocks,
 more encoding symbols may be received than there are source symbols
 in the corresponding source block, in which case the excess encoding
 symbols are discarded. An example encoding structure is shown in
 Figure 1.

Luby, et. al. Informational [Page 8]

RFC 3453 FEC in Reliable Multicast December 2002

 | source symbol IDs | source symbols IDs |
 | of source block 0 | of source block 1 |
 | |
 v v
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |0 |1 |2 |3 |4 |5 |6 |7 |0 |1 |2 |3 | 4|5 |6 |7 |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |
 FEC encoder
 |
 v
 +--+
 |0 |1 |2 |3 | 4| 5| 6| 7| 8| 9| 0| 1| 2| 3| 4| 5| 6| 7| 8| 9|
 +--+
 ^ ^
 | |
 | encoding symbol IDs | encoding symbol IDs |
 | of encoding block 0 | of encoding block 1 |

 Figure 1. The encoding structure for an object divided into two
 source blocks consisting of 8 source symbols each, and the FEC
 encoder is used to generate 2 additional redundant symbols (10
 encoding symbols in total) for each of the two source blocks.

 In many cases, an object is partitioned into equal length source
 blocks each consisting of k contiguous source symbols of the object,
 i.e., block c consists of the range of source symbols [ck, (c+1)k-1].
 This ensures that the FEC encoder can be optimized to handle a
 particular number k of source symbols. This also ensures that memory
 references are local when the sender reads source symbols to encode,
 and when the receiver reads encoding symbols to decode. Locality of
 reference is particularly important when the object is stored on
 disk, as it reduces the disk seeks required. The block number and
 the source symbol ID within that block can be used to uniquely
 specify a source symbol within the object. If the size of the object
 is not a multiple of k source symbols, then the last source block
 will contain less than k symbols.

 The block numbers can be numbered consecutively starting from zero.
 Encoding symbols within a block can be uniquely identified by an
 encoding symbol ID. One way of identifying encoding symbols within a
 block is to use the combination of an encoding flag that identifies
 the symbol as either a source symbol or a redundant symbol together
 with either a source symbol ID or a redundant symbol ID. For
 example, an encoding flag value of 1 can indicate that the encoding
 symbol is a source symbol and 0 can indicate that it is a redundant
 symbol. The source symbol IDs can be numbered from 0 to k-1 and the
 redundant symbol IDs can be numbered from 0 to n-k-1.

Luby, et. al. Informational [Page 9]

RFC 3453 FEC in Reliable Multicast December 2002

 For example, if the object consists 10 source symbols with values a,
 b, c, d, e, f, g, h, i, and j, and k = 5 and n = 8, then there are
 two source blocks consisting of 5 symbols each, and there are two
 encoding blocks consisting of 8 symbols each. Let p, q and r be the
 values of the redundant symbols for the first encoding block, and let
 x, y and z be the values of the redundant symbols for the second
 encoding block. Then the encoding symbols together with their
 identifiers are

 (0, 1, 0: a), (0, 1, 1: b), (0, 1, 2: c), (0, 1, 3: d), (0, 1, 4: e),
 (0, 0, 0: p), (0, 0, 1: q), (0, 0, 2: r),
 (1, 1, 0: f), (1, 1, 1: g), (1, 1, 2: h), (1, 1, 3: i), (1, 1, 4: j),
 (1, 0, 0: x), (1, 0, 1: y), (1, 0, 2: z).

 In this example, the first value identifies the block number and the
 second two values together identify the encoding symbol within the
 block, i.e, the encoding symbol ID consists of the encoding flag
 together with either the source symbol ID or the redundant symbol ID
 depending on the value of the encoding flag. The value of the
 encoding symbol is written after the colon. Each block can be
 recovered from any 5 of the 8 encoding symbols associated with that
 block. For example, reception of

 (0, 1, 1: b), (0, 1, 2: c), (0, 1, 3: d), (0, 0, 0: p), (0, 0, 1: q)

 is sufficient to recover the first source block, and reception of

 (1, 1, 0: f), (1, 1, 1: g), (1, 0, 0: x), (1, 0, 1: y), (1, 0, 2: z)

 is sufficient to recover the second source block.

 Another way of uniquely identifying encoding symbols within a block
 is to let the encoding symbol IDs for source symbols be 0,...,k-1 and
 to let the encoding symbol IDs for redundant symbols be k,...,n-1.

2.3. Large block FEC codes

 Tornado codes [12], [13], [10], [11], [9] are large block FEC codes
 that provide an alternative to small block FEC codes. An (n, k)
 Tornado code requires slightly more than k out of n encoding symbols
 to recover k source symbols, i.e., there is a small reception
 overhead. The benefit of the small cost of non-zero reception
 overhead is that the value of k may be on the order of tens of
 thousands and still the encoding and decoding are efficient. Because
 of memory considerations, in practice the value of n is restricted to
 be a small multiple of k, e.g., n = 2k. For example, [4] describes
 an implementation of Tornado codes where the encoding and decoding
 speeds are tens of megabytes per second for Pentium class machines of

Luby, et. al. Informational [Page 10]

RFC 3453 FEC in Reliable Multicast December 2002

 various vintages when k is in the tens of thousands and n = 2k. The
 reception overhead for such values of k and n is in the 5-10% range.
 Tornado codes require a large amount of out of band information to be
 communicated to all senders and receivers for each different object
 length, and require an amount of memory on the encoder and decoder
 which is proportional to the object length times 2n/k.

 Tornado codes are designed to have low reception overhead on average
 with respect to reception of a random portion of the encoding
 packets. Thus, to ensure that a receiver can reassemble the object
 with low reception overhead, the packets are permuted into a random
 order before transmission.

2.4. Expandable FEC codes

 All of the FEC codes described up to this point are block codes.
 There is a different type of FEC codes that we call expandable FEC
 codes. Like block codes, an expandable FEC encoder operates on an
 object of known size that is partitioned into equal length source
 symbols. Unlike block codes, there is no predetermined number of
 encoding symbols that can be generated for expandable FEC codes.
 Instead, an expandable FEC encoder can generate as few or as many
 unique encoding symbols as required on demand.

 LT codes [6], [7], [8], [5] are an example of large expandable FEC
 codes with a small reception overhead. An LT encoder uses
 randomization to generate each encoding symbol randomly and
 independently of all other encoding symbols. Like Tornado codes, the
 number of source symbols k may be very large for LT codes, i.e., on
 the order of tens to hundreds of thousands, and the encoder and
 decoder run efficiently in software. For example the encoding and
 decoding speeds for LT codes are in the range 3-20 megabytes per
 second for Pentium class machines of various vintages when k is in
 the high tens of thousands. An LT encoder can generate as few or as
 many encoding symbols as required on demand. When a new encoding
 symbol is to be generated by an LT encoder, it is based on a randomly
 chosen encoding symbol ID that uniquely describes how the encoding
 symbol is to be generated from the source symbols. In general, each
 encoding symbol ID value corresponds to a unique encoding symbol, and
 thus the space of possible encoding symbols is approximately four
 billion if for example the encoding symbol ID is 4 bytes. Thus, the
 chance that a particular encoding symbol is the same as any other
 particular encoding symbol is inversely proportional to the number of
 possible encoding symbol IDs. An LT decoder has the property that
 with very high probability the receipt of any set of slightly more
 than k randomly and independently generated encoding symbols is
 sufficient to reassemble the k source symbols. For example, when k

Luby, et. al. Informational [Page 11]

RFC 3453 FEC in Reliable Multicast December 2002

 is on the order of tens to hundreds of thousands the reception
 overhead is less than 5% with no failures in hundreds of millions of
 trials under any loss conditions.

 Because encoding symbols are randomly and independently generated by
 choosing random encoding symbol IDs, LT codes have the property that
 encoding symbols for the same k source symbols can be generated and
 transmitted from multiple senders and received by a receiver and the
 reception overhead and the decoding time is the same as if though all
 the encoding symbols were generated by a single sender. The only
 requirement is that the senders choose their encoding symbol IDs
 randomly and independently of one another.

 There is a weak tradeoff between the number of source symbols and the
 reception overhead for LT codes, and the larger the number of source
 symbols the smaller the reception overhead. Thus, for shorter
 objects, it is sometimes advantageous to partition the object into
 many short source symbols and include multiple encoding symbols in
 each packet. In this case, a single encoding symbol ID is used to
 identify the multiple encoding symbols contained in a single packet.

 There are a couple of factors for choosing the appropriate symbol
 length/ number of source symbols tradeoff. The primary consideration
 is that there is a fixed overhead per symbol in the overall
 processing requirements of the encoding and decoding, independent of
 the number of source symbols. Thus, using shorter symbols means that
 this fixed overhead processing per symbol will be a larger component
 of the overall processing requirements, leading to larger overall
 processing requirements. A second much less important consideration
 is that there is a component of the processing per symbol that
 depends logarithmically on the number of source symbols, and thus for
 this reason there is a slight preference towards fewer source
 symbols.

 Like small block codes, there is a point when the object is large
 enough that it makes sense to partition it into blocks when using LT
 codes. Generally the object is partitioned into blocks whenever the
 number of source symbols times the packet payload length is less than
 the size of the object. Thus, if the packet payload is 1024 bytes
 and the maximum number of source symbols is 128,000 then any object
 over 128 megabytes will be partitioned into more than one block. One
 can choose the maximum number of source symbols to use, depending on
 the desired encoding and decoding speed versus reception overhead
 tradeoff desired. Encoding symbols can be uniquely identified by a
 block number (when the object is large enough to be partitioned into
 more than one block) and an encoding symbol ID. The block numbers,
 if they are used, are generally numbered consecutively starting from
 zero within the object. The block number and the encoding symbol ID

Luby, et. al. Informational [Page 12]

RFC 3453 FEC in Reliable Multicast December 2002

 are both chosen uniformly and randomly from their range when an
 encoding symbol is to be transmitted. For example, suppose the
 number of source symbols is 128,000 and the number of blocks is 2.
 Then, each packet generated by the LT encoder could be of the form
 (b, x: y). In this example, the first value identifies the block
 number and the second value identifies the encoding symbol within the
 block. In this example, the block number b is either 0 or 1, and the
 encoding symbol ID x might be a 32-bit value. The value y after the
 colon is the value of the encoding symbol.

2.5. Source blocks with variable length source symbols

 For all the FEC codes described above, all the source symbols in the
 same source block are all of the same length. In this section, we
 describe a general technique to handle the case when it is desirable
 to use source symbols of varying lengths in a single source block.
 This technique is applicable to block FEC codes.

 Let l_1, l_2, ... , l_k be the lengths in bytes of k varying length
 source symbols to be considered part of the same source block. Let
 lmax be the maximum over i = 1, ... , k of l_i. To prepare the
 source block for the FEC encoder, pad each source symbol i out to
 length lmax with a suffix of lmax-l_i zeroes, and then prepend to the
 beginning of this the value l_i. Thus, each padded source symbol is
 of length x+lmax, assuming that it takes x bytes to store an integer
 with possible values 0,...,lmax, where x is a protocol constant known
 to both the encoder and the decoder. These padded source symbols,
 each of length x+lmax, are the input to the encoder, together with
 the value n. The encoder then generates n-k redundant symbols, each
 of length x+lmax.

 The encoding symbols that are placed into packets consist of the
 original k varying length source symbols and n-k redundant symbols,
 each of length x+lmax. From any k of the received encoding symbols,
 the FEC decoder recreates the k original source symbols as follows.
 If all k original source symbols are received, then no decoding is
 necessary. Otherwise, at least one redundant symbol is received,
 from which the receiver can easily determine if the block is composed
 of variable- length source symbols: if the redundant symbol(s) is
 longer than the source symbols then the source symbols are variable-
 length. Note that in a variable-length block the redundant symbols
 are always longer than the longest source symbol, due to the presence
 of the prepended symbol- length. The receiver can determine the
 value of lmax by subtracting x from the length of a received
 redundant symbol. For each of the received original source symbols,
 the receiver can generate the corresponding padded source symbol as
 described above. Then, the input to the FEC decoder is the set of
 received redundant symbols, together with the set of padded source

Luby, et. al. Informational [Page 13]

RFC 3453 FEC in Reliable Multicast December 2002

 symbols constructed from the received original symbols. The FEC
 decoder then produces the set of k padded source symbols. Once the k
 padded source symbols have been recovered, the length l_i of original
 source symbol i can be recovered from the first x bytes of the ith
 padded source symbol, and then original source symbol i is obtained
 by taking the next l_i bytes following the x bytes of the length
 field.

3. Security Considerations

 The use of FEC, in and of itself, imposes no additional security
 considerations versus sending the same information without FEC.
 However, just like for any transmission system, a malicious sender
 may try to inject packets carrying corrupted encoding symbols. If a
 receiver accepts one or more corrupted encoding symbol, in place of
 authentic ones, then such a receiver may reconstruct a corrupted
 object.

 Application-level transmission object authentication can detect the
 corrupted transfer, but the receiver must discard the transferred
 object. By injecting corrupted encoding symbols, they are accepted
 as valid encoding symbols by a receiver, which at the very least, is
 an effective denial of service attack.

 In light of this possibility, FEC receivers may screen the source
 address of a received symbol against a list of authentic transmitter
 addresses. Since source addresses may be spoofed, transport
 protocols using FEC may provide mechanisms for robust source
 authentication of each encoding symbol. Multicast routers along the
 path of a FEC transfer may provide the capability of discarding
 multicast packets that originated on that subnet, and whose source IP
 address does not correspond with that subnet.

 It is recommended that a packet authentication scheme such as TESLA
 [14] be used in conjunction with FEC codes. Then, packets that
 cannot be authenticated can be discarded and the object can be
 reliably recovered from the received authenticated packets.

4. Intellectual Property Disclosure

 The IETF has been notified of intellectual property rights claimed in
 regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

Luby, et. al. Informational [Page 14]

RFC 3453 FEC in Reliable Multicast December 2002

5. Acknowledgments

 Thanks to Vincent Roca and Hayder Radha for their detailed comments
 on this document.

6. References

 [1] Acharya, S., Franklin, M. and S. Zdonik, "Dissemination - Based
 Data Delivery Using Broadcast Disks", IEEE Personal
 Communications, pp.50-60, Dec 1995.

 [2] Blahut, R.E., "Theory and Practice of Error Control Codes",
 Addison Wesley, MA, 1984.

 [3] Bradner, S., "The Internet Standards Process -- Revision 3", BCP
 9, RFC 2026, October 1996.

 [4] Byers, J.W., Luby, M., Mitzenmacher, M. and A. Rege, "A Digital
 Fountain Approach to Reliable Distribution of Bulk Data",
 Proceedings ACM SIGCOMM ’98, Vancouver, Canada, Sept 1998.

 [5] Haken, A., Luby, M., Horn, G., Hernek, D., Byers, J. and M.
 Mitzenmacher, "Generating high weight encoding symbols using a
 basis", U.S. Patent No. 6,411,223, June 25, 2002.

 [6] Luby, M., "Information Additive Code Generator and Decoder for
 Communication Systems", U.S. Patent No. 6,307,487, October 23,
 2001.

 [7] Luby, M., "Information Additive Group Code Generator and Decoder
 for Communication Systems", U.S. Patent No. 6,320,520, November
 20, 2001.

 [8] Luby, M., "Information Additive Code Generator and Decoder for
 Communication Systems", U.S. Patent No. 6,373,406, April 16,
 2002.

 [9] Luby, M. and M. Mitzenmacher, "Loss resilient code with double
 heavy tailed series of redundant layers", U.S. Patent No.
 6,195,777, February 27, 2001.

 [10] Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D. and V.
 Stemann, "Message encoding with irregular graphing", U.S. Patent
 No. 6,163,870, December 19, 2000.

Luby, et. al. Informational [Page 15]

RFC 3453 FEC in Reliable Multicast December 2002

 [11] Luby, M., Mitzenmacher, M., Shokrollahi, A. and D. Spielman,
 "Efficient Erasure Correcting Codes", IEEE Transactions on
 Information Theory, Special Issue: Codes on Graphs and Iterative
 Algorithms, pp. 569-584, Vol. 47, No. 2, February 2001.

 [12] Luby, M., Shokrollahi, A., Stemann, V., Mitzenmacher, M. and D.
 Spielman, "Loss resilient decoding technique", U.S. Patent No.
 6,073,250, June 6, 2000.

 [13] Luby, M., Shokrollahi, A., Stemann, V., Mitzenmacher, M. and D.
 Spielman, "Irregularly graphed encoding technique", U.S. Patent
 No. 6,081,909, June 27, 2000.

 [14] Perrig, A., Canetti, R., Song, D. and J.D. Tygar, "Efficient and
 Secure Source Authentication for Multicast", Network and
 Distributed System Security Symposium, NDSS 2001, pp. 35-46,
 February 2001.

 [15] Rizzo, L., "Effective Erasure Codes for Reliable Computer
 Communication Protocols", ACM SIGCOMM Computer Communication
 Review, Vol.27, No.2, pp.24-36, Apr 1997.

 [16] Rizzo, L., "On the Feasibility of Software FEC", DEIT Tech
 Report, http://www.iet.unipi.it/˜luigi/softfec.ps, Jan 1997.

Luby, et. al. Informational [Page 16]

RFC 3453 FEC in Reliable Multicast December 2002

7. Authors’ Addresses

 Michael Luby
 Digital Fountain
 39141 Civic Center Drive
 Suite 300
 Fremont, CA 94538

 EMail: luby@digitalfountain.com

 Lorenzo Vicisano
 Cisco Systems, Inc.
 170 West Tasman Dr.,
 San Jose, CA, USA, 95134

 EMail: lorenzo@cisco.com

 Jim Gemmell
 Microsoft Research
 455 Market St. #1690
 San Francisco, CA, 94105

 EMail: jgemmell@microsoft.com

 Luigi Rizzo
 Dip. di Ing. dell’Informazione
 Universita‘ di Pisa
 via Diotisalvi 2, 56126 Pisa, Italy

 EMail:luigi@iet.unipi.it

 Mark Handley
 ICSI Center for Internet Research
 1947 Center St.
 Berkeley CA, USA, 94704

 EMail: mjh@icir.org

 Jon Crowcroft
 Marconi Professor of Communications Systems
 University of Cambridge
 Computer Laboratory
 William Gates Building
 J J Thomson Avenue
 Cambridge
 CB3 0FD

 EMail: Jon.Crowcroft@cl.cam.ac.uk

Luby, et. al. Informational [Page 17]

RFC 3453 FEC in Reliable Multicast December 2002

8. Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Luby, et. al. Informational [Page 18]

