
Network Working Group P. Agarwal
Request for Comments: 3443 Brocade
Updates: 3032 B. Akyol
Category: Standards Track Cisco Systems
 January 2003

 Time To Live (TTL) Processing in
 Multi-Protocol Label Switching (MPLS) Networks

Status of this Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This document describes Time To Live (TTL) processing in hierarchical
 Multi-Protocol Label Switching (MPLS) networks and is motivated by
 the need to formalize a TTL-transparent mode of operation for an MPLS
 label-switched path. It updates RFC 3032, "MPLS Label Stack
 Encoding". TTL processing in both Pipe and Uniform Model
 hierarchical tunnels are specified with examples for both "push" and
 "pop" cases. The document also complements RFC 3270, "MPLS Support
 of Differentiated Services" and ties together the terminology
 introduced in that document with TTL processing in hierarchical MPLS
 networks.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC-2119].

1. Introduction and Motivation

 This document describes Time To Live (TTL) processing in hierarchical
 MPLS networks. We believe that this document adds details that have
 not been addressed in [MPLS-ARCH, MPLS-ENCAPS], and that the methods
 presented in this document complement [MPLS-DS].

Agarwal & Akyol Standards Track [Page 1]

RFC 3443 TTL Processing in MPLS Networks January 2003

 In particular, a new mode of operation (referred to as the Pipe
 Model) is introduced to support the practice of configuring MPLS LSPs
 such that packets transiting the LSP see the tunnel as a single hop
 regardless of the number of intermediary label switch routers (LSR).
 The Pipe Model for TTL is currently being used in multiple networks
 and is provided as an option configurable by the network operator by
 several vendors.

 This document formalizes the TTL processing in MPLS networks and ties
 it with the terminology introduced in [MPLS-DS].

2. TTL Processing in MPLS Networks

2.1. Changes to RFC 3032 [MPLS-ENCAPS]

 a) [MPLS-ENCAPS] only covers the Uniform Model and does NOT address
 the Pipe Model or the Short Pipe Model. This document addresses
 these two models and for completeness will also address the
 Uniform Model.

 b) [MPLS-ENCAPS] does not cover hierarchical LSPs. This document
 addresses this issue.

 c) [MPLS-ENCAPS] does not define TTL processing in the presence of
 Penultimate Hop Popping (PHP). This document addresses this
 issue.

2.2. Terminology and Background

 As defined in [MPLS-ENCAPS], MPLS packets use a MPLS shim header that
 indicates the following information about a packet:

 a) MPLS Label (20 bits)
 b) TTL (8 bits)
 c) Bottom of stack (1 bit)
 d) Experimental bits (3 bits)

 The experimental bits were later redefined in [MPLS-DS] to indicate
 the scheduling and shaping behavior that could be associated with an
 MPLS packet.

 [MPLS-DS] also defined two models for MPLS tunnel operation: Pipe and
 Uniform Models. In the Pipe Model, a MPLS network acts like a
 circuit when MPLS packets traverse the network such that only the LSP
 ingress and egress points are visible to nodes that are outside the
 tunnel. A Short variation of the Pipe Model is also defined in
 [MPLS-DS] to differentiate between different egress forwarding and
 QoS treatments. On the other hand, the Uniform Model makes all the

Agarwal & Akyol Standards Track [Page 2]

RFC 3443 TTL Processing in MPLS Networks January 2003

 nodes that a LSP traverses visible to nodes outside the tunnel. We
 will extend the Pipe and Uniform Models to include TTL processing in
 the following sections. Furthermore, TTL processing, when performing
 PHP, is also described in this document. For a detailed description
 of Pipe and Uniform Models, please see [MPLS-DS].

 TTL processing in MPLS networks can be broken down into two logical
 blocks: (i) the incoming TTL determination to take into account any
 tunnel egress due to MPLS Pop operations; (ii) packet processing of
 (possibly) exposed packets and outgoing TTLs.

 We also note here that signaling the LSP type (Pipe, Short Pipe or
 Uniform Model) is out of the scope of this document, and that is also
 not addressed in the current versions of the label distribution
 protocols, e.g. LDP [MPLS-LDP] and RSVP-TE [MPLS-RSVP]. Currently,
 the LSP type is configured by the network operator manually by means
 of either a command line or network management interface.

2.3. New Terminology

 iTTL: The TTL value to use as the incoming TTL. No checks are
 performed on the iTTL.

 oTTL: This is the TTL value used as the outgoing TTL value (see
 section 3.5 for exception). It is always (iTTL - 1) unless otherwise
 stated.

 oTTL Check: Check if oTTL is greater than 0. If the oTTL Check is
 false, then the packet is not forwarded. Note that the oTTL check is
 performed only if any outgoing TTL (either IP or MPLS) is set to oTTL
 (see section 3.5 for exception).

3. TTL Processing in different Models

 This section describes the TTL processing for LSPs conforming to each
 of the 3 models (Uniform, Short Pipe and Pipe) in the
 presence/absence of PHP (where applicable).

Agarwal & Akyol Standards Track [Page 3]

RFC 3443 TTL Processing in MPLS Networks January 2003

3.1. TTL Processing for Uniform Model LSPs (with or without PHP)

 (consistent with [MPLS-ENCAPS]):

 ========== LSP =============================>

 +--Swap--(n-2)-...-swap--(n-i)---+
 / (outer header) \
 (n-1) (n-i)
 / \
 >--(n)--Push...............(x).....................Pop--(n-i-1)->
 (I) (inner header) (E or P)

 (n) represents the TTL value in the corresponding header
 (x) represents non-meaningful TTL information
 (I) represents the LSP ingress node
 (P) represents the LSP penultimate node
 (E) represents the LSP Egress node

 This picture shows TTL processing for a Uniform Model MPLS LSP. Note
 that the inner and outer TTLs of the packets are synchronized at
 tunnel ingress and egress.

3.2. TTL Processing for Short Pipe Model LSPs

3.2.1. TTL Processing for Short Pipe Model LSPs without PHP

 ========== LSP =============================>

 +--Swap--(N-1)-...-swap--(N-i)-----+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push...............(n-1).....................Pop--(n-2)->
 (I) (inner header) (E)

 (N) represents the TTL value (may have no relationship to n)
 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (E) represents the LSP Egress node

 The Short Pipe Model was introduced in [MPLS-DS]. In the Short Pipe
 Model, the forwarding treatment at the egress LSR is based on the
 tunneled packet, as opposed to the encapsulating packet.

Agarwal & Akyol Standards Track [Page 4]

RFC 3443 TTL Processing in MPLS Networks January 2003

3.2.2. TTL Processing for Short Pipe Model with PHP:

 ========== LSP =====================================>
 +-Swap-(N-1)-...-swap-(N-i)-+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push.............(n-1)............Pop-(n-1)-Decr.-(n-2)->
 (I) (inner header) (P) (E)

 (N) represents the TTL value (may have no relationship to n)
 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (P) represents the LSP penultimate node
 (E) represents the LSP egress node.

 Since the label has already been popped by the LSP’s penultimate
 node, the LSP egress node just decrements the header TTL.

 Also note that at the end of the Short Pipe Model LSP, the TTL of the
 tunneled packet has been decremented by two, with or without PHP.

3.3. TTL Processing for Pipe Model LSPs (without PHP only):

 ========== LSP =============================>

 +--Swap--(N-1)-...-swap--(N-i)-----+
 / (outer header) \
 (N) (N-i)
 / \
 >--(n)--Push...............(n-1)....................Pop--(n-2)->
 (I) (inner header) (E)

 (N) represents the TTL value (may have no relationship to n)
 (n) represents the tunneled TTL value in the encapsulated header
 (I) represents the LSP ingress node
 (E) represents the LSP Egress node

 From the TTL perspective, the treatment for a Pipe Model LSP is
 identical to the Short Pipe Model without PHP.

Agarwal & Akyol Standards Track [Page 5]

RFC 3443 TTL Processing in MPLS Networks January 2003

3.4. Incoming TTL (iTTL) determination

 If the incoming packet is an IP packet, then the iTTL is the TTL
 value of the incoming IP packet.

 If the incoming packet is an MPLS packet and we are performing a
 Push/Swap/PHP, then the iTTL is the TTL of the topmost incoming
 label.

 If the incoming packet is an MPLS packet and we are performing a Pop
 (tunnel termination), the iTTL is based on the tunnel type (Pipe or
 Uniform) of the LSP that was popped. If the popped label belonged to
 a Pipe Model LSP, then the iTTL is the value of the TTL field of the
 header, exposed after the label was popped (note that for the purpose
 of this document, the exposed header may be either an IP header or an
 MPLS label). If the popped label belonged to a Uniform Model LSP,
 then the iTTL is equal to the TTL of the popped label. If multiple
 Pop operations are performed sequentially, then the procedure given
 above is repeated with one exception: the iTTL computed during the
 previous Pop is used as the TTL of subsequent labels being popped;
 i.e. the TTL contained in the subsequent label is essentially ignored
 and replaced with the iTTL computed during the previous pop.

3.5. Outgoing TTL Determination and Packet Processing

 After the iTTL computation is performed, the oTTL check is performed.
 If the oTTL check succeeds, then the outgoing TTL of the
 (labeled/unlabeled) packet is calculated and packet headers are
 updated as defined below.

 If the packet was routed as an IP packet, the TTL value of the IP
 packet is set to oTTL (iTTL - 1). The TTL value(s) for any pushed
 label(s) is determined as described in section 3.6.

 For packets that are routed as MPLS, we have four cases:

 1) Swap-only: The routed label is swapped with another label and the
 TTL field of the outgoing label is set to oTTL.

 2) Swap followed by a Push: The swapped operation is performed as
 described in (1). The TTL value(s) of any pushed label(s) is
 determined as described in section 3.6.

 3) Penultimate Hop Pop (PHP): The routed label is popped. The oTTL
 check should be performed irrespective of whether the oTTL is used
 to update the TTL field of the outgoing header. If the PHPed
 label belonged to a Short Pipe Model LSP, then the TTL field of
 the PHP exposed header is neither checked nor updated. If the

Agarwal & Akyol Standards Track [Page 6]

RFC 3443 TTL Processing in MPLS Networks January 2003

 PHPed label was a Uniform Model LSP, then the TTL field of the PHP
 exposed header is set to the oTTL. The TTL value(s) of additional
 labels are determined as described in section 3.6

 4) Pop: The pop operation happens before routing and hence it is not
 considered here.

3.6. Tunnel Ingress Processing (Push)

 For each pushed Uniform Model label, the TTL is copied from the
 label/IP-packet immediately underneath it.

 For each pushed Pipe Model or Short Pipe Model label, the TTL field
 is set to a value configured by the network operator. In most
 implementations, this value is set to 255 by default.

3.7. Implementation Remarks

 1) Although iTTL can be decremented by a value larger than 1 while it
 is being updated or oTTL is being determined, this feature should
 be only used for compensating for network nodes that are not
 capable of decrementing TTL values.

 2) Whenever iTTL is decremented, the implementer must make sure that
 the value does not become negative.

 3) In the Short Pipe Model with PHP enabled, the TTL of the tunneled
 packet is unchanged after the PHP operation.

4. Conclusion

 This Internet Document describes how the TTL field can be processed
 in an MPLS network. We clarified the various methods that are
 applied in the presence of hierarchical tunnels and completed the
 integration of Pipe and Uniform Models with TTL processing.

5. Security Considerations

 This document does not add any new security issues other than the
 ones defined in [MPLS-ENCAPS, MPLS-DS]. In particular, the document
 does not define a new protocol or expand an existing one and does not
 introduce security problems into the existing protocols. The authors
 believe that clarification of TTL handling in MPLS networks benefits
 service providers and their customers since troubleshooting is
 simplified.

Agarwal & Akyol Standards Track [Page 7]

RFC 3443 TTL Processing in MPLS Networks January 2003

6. References

6.1. Normative References

 [RFC-2119] Bradner, S. "Key words for use in RFC’s to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [MPLS-ARCH] Rosen, E., Viswanathan, A. and R. Callon,
 "Multiprotocol Label Switching Architecture", RFC 3031,
 January 2001.

 [MPLS-ENCAPS] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y.,
 Farinacci, D., Li, T. and A. Conta, "MPLS Label Stack
 Encoding", RFC 3032, January 2001.

 [MPLS-DS] Le Faucheur, F., Wu, L., Davie, B., Davari, S.,
 Vaananen, P., Krishnan, R., Cheval, P. and J. Heinanen,
 "Multi-Protocol Label Switching (MPLS) Support of
 Differentiated Services", RFC 3270, May 2002.

6.2. Informative References

 [MPLS-LDP] Andersson, L., Doolan, P., Feldman, N., Fredette, A.
 and B. Thomas, "LDP Specification", RFC 3036, January
 2001.

 [MPLS-RSVP] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan,
 V. and G. Swallow, "RSVP-TE: Extensions to RSVP for
 LSP Tunnels", RFC 3209, December 2001.

7. Acknowledgements

 The authors would like to thank the members of the MPLS working group
 for their feedback. We would especially like to thank Shahram Davari
 and Loa Andersson for their careful review of the document and their
 comments.

Agarwal & Akyol Standards Track [Page 8]

RFC 3443 TTL Processing in MPLS Networks January 2003

8. Author’s Addresses

 Puneet Agarwal
 Brocade Communications Systems, Inc.
 1745 Technology Drive
 San Jose, CA 95110

 EMail: puneet@acm.org

 Bora Akyol
 Cisco Systems
 170 W. Tasman Drive
 San Jose, CA 95134

 EMail: bora@cisco.com

Agarwal & Akyol Standards Track [Page 9]

RFC 3443 TTL Processing in MPLS Networks January 2003

9. Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Agarwal & Akyol Standards Track [Page 10]

