
Network Working Group P. Phaal
Request for Comments: 3176 S. Panchen
Category: Informational N. McKee
 InMon Corp.
 September 2001

 InMon Corporation’s sFlow: A Method for Monitoring Traffic in
 Switched and Routed Networks

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This memo defines InMon Coporation’s sFlow system. sFlow is a
 technology for monitoring traffic in data networks containing
 switches and routers. In particular, it defines the sampling
 mechanisms implemented in an sFlow Agent for monitoring traffic, the
 sFlow MIB for controlling the sFlow Agent, and the format of sample
 data used by the sFlow Agent when forwarding data to a central data
 collector.

Table of Contents

 1. Overview ... 2
 2. Sampling Mechanisms .. 2
 2.1 Sampling of Switched Flows 3
 2.1.1 Distributed Switching 4
 2.1.2 Random Number Generation 4
 2.2 Sampling of Network Interface Statistics 4
 3. sFlow MIB .. 5
 3.1 The SNMP Management Framework 5
 3.2 Definitions .. 6
 4. sFlow Datagram Format .. 14
 5. Security Considerations 25
 5.1 Control .. 26
 5.2 Transport .. 26
 5.3 Confidentiality .. 26
 6. References ... 27
 7. Authors’ Addresses ... 29

Phaal, et al. Informational [Page 1]

RFC 3176 InMon Corporation’s sFlow September 2001

 8. Intellectual Property Statement 30
 9. Full Copyright Statement 31

1. Overview

 sFlow is a technology for monitoring traffic in data networks
 containing switches and routers. In particular, it defines the
 sampling mechanisms implemented in an sFlow Agent for monitoring
 traffic, the sFlow MIB for controlling the sFlow Agent, and the
 format of sample data used by the sFlow Agent when forwarding data to
 a central data collector.

 The architecture and sampling techniques used in the sFlow monitoring
 system are designed to provide continuous site-wide (and network-
 wide) traffic monitoring for high speed switched and routed networks.

 The design specifically addresses issues associated with:

 o Accurately monitoring network traffic at Gigabit speeds and higher.

 o Scaling to manage tens of thousands of agents from a single point.

 o Extremely low cost agent implementation.

 The sFlow monitoring system consists of an sFlow Agent (embedded in a
 switch or router or in a stand alone probe) and a central data
 collector, or sFlow Analyzer.

 The sFlow Agent uses sampling technology to capture traffic
 statistics from the device it is monitoring. sFlow Datagrams are
 used to immediately forward the sampled traffic statistics to an
 sFlow Analyzer for analysis.

 This document describes the sampling mechanisms used by the sFlow
 Agent, the SFLOW MIB used by the sFlow Analyzer to control the sFlow
 Agent, and the sFlow Datagram Format used by the sFlow Agent to send
 traffic data to the sFlow Analyzer.

2. Sampling Mechanisms

 The sFlow Agent uses two forms of sampling: statistical packet-based
 sampling of switched flows, and time-based sampling of network
 interface statistics.

Phaal, et al. Informational [Page 2]

RFC 3176 InMon Corporation’s sFlow September 2001

2.1 Sampling of Switched Flows

 A flow is defined as all the packets that are received on one
 interface, enter the Switching/Routing Module and are sent to another
 interface. In the case of a one-armed router, the source and
 destination interface could be the same. In the case of a broadcast
 or multicast packet there may be multiple destination interfaces.
 The sampling mechanism must ensure that any packet involved in a flow
 has an equal chance of being sampled, irrespective of the flow to
 which it belongs.

 Sampling flows is accomplished as follows: When a packet arrives on
 an interface, a filtering decision is made that determines whether
 the packet should be dropped. If the packet is not filtered a
 destination interface is assigned by the switching/routing function.
 At this point a decision is made on whether or not to sample the
 packet. The mechanism involves a counter that is decremented with
 each packet. When the counter reaches zero a sample is taken.
 Whether or not a sample is taken, the counter Total_Packets is
 incremented. Total_Packets is a count of all the packets that could
 have been sampled.

 Taking a sample involves either copying the packet’s header, or
 extracting features from the packet (see sFlow Datagram Format for a
 description of the different forms of sample). Every time a sample
 is taken, the counter Total_Samples, is incremented. Total_Samples
 is a count of the number of samples generated. Samples are sent by
 the sampling entity to the sFlow Agent for processing. The sample
 includes the packet information, and the values of the Total_Packets
 and Total_Samples counters.

 When a sample is taken, the counter indicating how many packets to
 skip before taking the next sample should be reset. The value of the
 counter should be set to a random integer where the sequence of
 random integers used over time should be such that

 (1) Total_Packets/Total_Samples = Rate

 An alternative strategy for packet sampling is to generate a random
 number for each packet, compare the random number to a preset
 threshold and take a sample whenever the random number is smaller
 than the threshold value. Calculation of an appropriate threshold
 value depends on the characteristics of the random number generator,
 however, the resulting sample stream must still satisfy (1).

Phaal, et al. Informational [Page 3]

RFC 3176 InMon Corporation’s sFlow September 2001

2.1.1 Distributed Switching

 The SFLOW MIB permits separate sampling entities to be associated
 with different physical or logical elements of the switch (such as
 interfaces, backplanes or VLANs). Each sampling engine has its own
 independent state (i.e., Total_Packets, Total_Samples, Skip and
 Rate), and forwards its own sample messages to the sFlow Agent. The
 sFlow Agent is responsible for packaging the samples into datagrams
 for transmission to an sFlow Analyzer.

2.1.2 Random Number Generation

 The essential property of the random number generator is that the
 mean value of the numbers it generates converges to the required
 sampling rate.

 A uniform distribution random number generator is very effective.
 The range of skip counts (the variance) does not significantly affect
 results; variation of +-10% of the mean value is sufficient.

 The random number generator must ensure that all numbers in the range
 between its maximum and minimum values of the distribution are
 possible; a random number generator only capable of generating even
 numbers, or numbers with any common divisor is unsuitable.

 A new skip value is only required every time a sample is taken.

2.2 Sampling of Network Interface Statistics

 The objective of the counter sampling is to efficiently, periodically
 poll each data source on the device and extract key statistics.

 For efficiency and scalability reasons, the sFlow System implements
 counter polling in the sFlow Agent. A maximum polling interval is
 assigned to the agent, but the agent is free to schedule polling in
 order maximize internal efficiency.

 Flow sampling and counter sampling are designed as part of an
 integrated system. Both types of samples are combined in sFlow
 Datagrams. Since flow sampling will cause a steady, but random,
 stream of datagrams to be sent to the sFlow Analyzer, counter samples
 may be taken opportunistically in order to fill these datagrams.

 One strategy for counter sampling has the sFlow Agent keep a list of
 counter sources being sampled. When a flow sample is generated the
 sFlow Agent examines the list and adds counters to the sample
 datagram, least recently sampled first. Counters are only added to
 the datagram if the sources are within a short period, 5 seconds say,

Phaal, et al. Informational [Page 4]

RFC 3176 InMon Corporation’s sFlow September 2001

 of failing to meet the required sampling interval (see
 sFlowCounterSamplingInterval in SFLOW MIB). Whenever a counter
 source’s statistics are added to a sample datagram, the time the
 counter source was last sampled is updated and the counter source is
 placed at the end of the list. Periodically, say every second, the
 sFlow Agent examines the list of counter sources and sends any
 counters that need to be sent to meet the sampling interval
 requirement.

 Alternatively, if the agent regularly schedules counter sampling,
 then it should schedule each counter source at a different start time
 (preferably randomly) so that counter sampling is not synchronized
 within an agent or between agents.

3. sFlow MIB

 The sFlow MIB defines a control interface for an sFlow Agent. This
 interface provides a standard mechanism for remotely controlling and
 configuring an sFlow Agent.

3.1 The SNMP Management Framework

 The SNMP Management Framework presently consists of five major
 components:

 o An overall architecture, described in RFC 2571 [2].

 o Mechanisms for describing and naming objects and events for the
 purpose of management. The first version of this Structure of
 Management Information (SMI) is called SMIv1 and described in STD
 16,

 RFC 1155 [3], STD 16, RFC 1212 [4] and RFC 1215 [5]. The second
 version, called SMIv2, is described in STD 58, RFC 2578 [6], STD
 58, RFC 2579 [7] and STD 58, RFC 2580 [8].

 o Message protocols for transferring management information. The
 first version of the SNMP message protocol is called SNMPv1 and
 described in STD 15, RFC 1157 [9]. A second version of the SNMP
 message protocol, which is not an Internet standards track
 protocol, is called SNMPv2c and described in RFC 1901 [10] and RFC
 1906 [11]. The third version of the message protocol is called
 SNMPv3 and described in RFC 1906 [11], RFC 2572 [12] and RFC 2574
 [13].

Phaal, et al. Informational [Page 5]

RFC 3176 InMon Corporation’s sFlow September 2001

 o Protocol operations for accessing management information. The
 first set of protocol operations and associated PDU formats is
 described in STD 15, RFC 1157 [9]. A second set of protocol
 operations and associated PDU formats is described in RFC 1905
 [14].

 o A set of fundamental applications described in RFC 2573 [15] and
 the view-based access control mechanism described in RFC 2575
 [16].

 A more detailed introduction to the current SNMP Management Framework
 can be found in RFC 2570 [17].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the mechanisms defined in the SMI.

 This memo specifies a MIB module that is compliant to the SMIv2. A
 MIB conforming to the SMIv1 can be produced through the appropriate
 translations. The resulting translated MIB must be semantically
 equivalent, except where objects or events are omitted because no
 translation is possible (use of Counter64). Some machine readable
 information in SMIv2 will be converted into textual descriptions in
 SMIv1 during the translation process. However, this loss of machine
 readable information is not considered to change the semantics of the
 MIB.

3.2 Definitions

SFLOW-MIB DEFINITIONS ::= BEGIN

IMPORTS

MODULE-IDENTITY, OBJECT-TYPE, Integer32, enterprises
 FROM SNMPv2-SMI
SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB
OwnerString
 FROM RMON-MIB
InetAddressType, InetAddress
 FROM INET-ADDRESS-MIB
MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF;

sFlowMIB MODULE-IDENTITY
 LAST-UPDATED "200105150000Z" -- May 15, 2001
 ORGANIZATION "InMon Corp."
 CONTACT-INFO

Phaal, et al. Informational [Page 6]

RFC 3176 InMon Corporation’s sFlow September 2001

 "Peter Phaal
 InMon Corp.
 http://www.inmon.com/

 Tel: +1-415-661-6343
 Email: peter_phaal@inmon.com"
 DESCRIPTION
 "The MIB module for managing the generation and transportation
 of sFlow data records."

 --
 -- Revision History
 --
 REVISION "200105150000Z" -- May 15, 2001
 DESCRIPTION
 "Version 1.2

 Brings MIB into SMI v2 compliance."

 REVISION "200105010000Z" -- May 1, 2001
 DESCRIPTION
 "Version 1.1

 Adds sFlowDatagramVersion."
 ::= { enterprises 4300 1 }

sFlowAgent OBJECT IDENTIFIER ::= { sFlowMIB 1 }

sFlowVersion OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Uniquely identifies the version and implementation of this MIB.
 The version string must have the following structure:
 <MIB Version>;<Organization>;<Software Revision>
 where:
 <MIB Version> must be ’1.2’, the version of this MIB.
 <Organization> the name of the organization responsible
 for the agent implementation.
 <Revision> the specific software build of this agent.

 As an example, the string ’1.2;InMon Corp.;2.1.1’ indicates
 that this agent implements version ’1.2’ of the SFLOW MIB, that
 it was developed by ’InMon Corp.’ and that the software build
 is ’2.1.1’.

 The MIB Version will change with each revision of the SFLOW

Phaal, et al. Informational [Page 7]

RFC 3176 InMon Corporation’s sFlow September 2001

 MIB.

 Management entities must check the MIB Version and not attempt
 to manage agents with MIB Versions greater than that for which
 they were designed.

 Note: The sFlow Datagram Format has an independent version
 number which may change independently from <MIB Version>.
 <MIB Version> applies to the structure and semantics of
 the SFLOW MIB only."
 DEFVAL { "1.2;;" }
 ::= { sFlowAgent 1 }

sFlowAgentAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The address type of the address associated with this agent.
 Only ipv4 and ipv6 types are supported."
 ::= { sFlowAgent 2 }

sFlowAgentAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The IP address associated with this agent. In the case of a
 multi-homed agent, this should be the loopback address of the
 agent. The sFlowAgent address must provide SNMP connectivity
 to the agent. The address should be an invariant that does not
 change as interfaces are reconfigured, enabled, disabled,
 added or removed. A manager should be able to use the
 sFlowAgentAddress as a unique key that will identify this
 agent over extended periods of time so that a history can
 be maintained."
 ::= { sFlowAgent 3 }

sFlowTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SFlowEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table of the sFlow samplers within a device."
 ::= { sFlowAgent 4 }

sFlowEntry OBJECT-TYPE
 SYNTAX SFlowEntry

Phaal, et al. Informational [Page 8]

RFC 3176 InMon Corporation’s sFlow September 2001

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Attributes of an sFlow sampler."
 INDEX { sFlowDataSource }
 ::= { sFlowTable 1 }

SFlowEntry ::= SEQUENCE {
 sFlowDataSource OBJECT IDENTIFIER,
 sFlowOwner OwnerString,
 sFlowTimeout Integer32,
 sFlowPacketSamplingRate Integer32,
 sFlowCounterSamplingInterval Integer32,
 sFlowMaximumHeaderSize Integer32,
 sFlowMaximumDatagramSize Integer32,
 sFlowCollectorAddressType InetAddressType,
 sFlowCollectorAddress InetAddress,
 sFlowCollectorPort Integer32,
 sFlowDatagramVersion Integer32
}

sFlowDataSource OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "Identifies the source of the data for the sFlow sampler.
 The following data source types are currently defined:

 - ifIndex.<I>
 DataSources of this traditional form are called ’port-based’.
 Ideally the sampling entity will perform sampling on all flows
 originating from or destined to the specified interface.
 However, if the switch architecture only permits input or
 output sampling then the sampling agent is permitted to only
 sample input flows input or output flows. Each packet must
 only be considered once for sampling, irrespective of the
 number of ports it will be forwarded to.

 Note: Port 0 is used to indicate that all ports on the device
 are represented by a single data source.
 - sFlowPacketSamplingRate applies to all ports on the
 device capable of packet sampling.
 - sFlowCounterSamplingInterval applies to all ports.

 - smonVlanDataSource.<V>
 A dataSource of this form refers to a ’Packet-based VLAN’
 and is called a ’VLAN-based’ dataSource. <V> is the VLAN

Phaal, et al. Informational [Page 9]

RFC 3176 InMon Corporation’s sFlow September 2001

 ID as defined by the IEEE 802.1Q standard. The
 value is between 1 and 4094 inclusive, and it represents
 an 802.1Q VLAN-ID with global scope within a given
 bridged domain.
 Sampling is performed on all packets received that are part
 of the specified VLAN (no matter which port they arrived on).
 Each packet will only be considered once for sampling,
 irrespective of the number of ports it will be forwarded to.

 - entPhysicalEntry.<N>
 A dataSource of this form refers to a physical entity within
 the agent (e.g., entPhysicalClass = backplane(4)) and is called
 an ’entity-based’ dataSource.
 Sampling is performed on all packets entering the resource (e.g.
 If the backplane is being sampled, all packets transmitted onto
 the backplane will be considered as single candidates for
 sampling irrespective of the number of ports they ultimately
 reach).

 Note: Since each DataSource operates independently, a packet
 that crosses multiple DataSources may generate multiple
 flow records."
 ::= { sFlowEntry 1 }

sFlowOwner OBJECT-TYPE
 SYNTAX OwnerString
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The entity making use of this sFlow sampler. The empty string
 indicates that the sFlow sampler is currently unclaimed.
 An entity wishing to claim an sFlow sampler must make sure
 that the sampler is unclaimed before trying to claim it.
 The sampler is claimed by setting the owner string to identify
 the entity claiming the sampler. The sampler must be claimed
 before any changes can be made to other sampler objects.

 In order to avoid a race condition, the entity taking control
 of the sampler must set both the owner and a value for
 sFlowTimeout in the same SNMP set request.

 When a management entity is finished using the sampler,
 it should set its value back to unclaimed. The agent
 must restore all other entities this row to their
 default values when the owner is set to unclaimed.

 This mechanism provides no enforcement and relies on the
 cooperation of management entities in order to ensure that

Phaal, et al. Informational [Page 10]

RFC 3176 InMon Corporation’s sFlow September 2001

 competition for a sampler is fairly resolved."
 DEFVAL { "" }
 ::= { sFlowEntry 2 }

sFlowTimeout OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The time (in seconds) remaining before the sampler is released
 and stops sampling. When set, the owner establishes control
 for the specified period. When read, the remaining time in the
 interval is returned.

 A management entity wanting to maintain control of the sampler
 is responsible for setting a new value before the old one
 expires.

 When the interval expires, the agent is responsible for
 restoring all other entities in this row to their default
 values."
 DEFVAL { 0 }
 ::= { sFlowEntry 3 }

sFlowPacketSamplingRate OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The statistical sampling rate for packet sampling from this
 source.

 Set to N to sample 1/Nth of the packets in the monitored flows.
 An agent should choose its own algorithm introduce variance
 into the sampling so that exactly every Nth packet is not
 counted. A sampling rate of 1 counts all packets. A sampling
 rate of 0 disables sampling.

 The agent is permitted to have minimum and maximum allowable
 values for the sampling rate. A minimum rate lets the agent
 designer set an upper bound on the overhead associated with
 sampling, and a maximum rate may be the result of hardware
 restrictions (such as counter size). In addition not all values
 between the maximum and minimum may be realizable as the
 sampling rate (again because of implementation considerations).

 When the sampling rate is set the agent is free to adjust the
 value so that it lies between the maximum and minimum values

Phaal, et al. Informational [Page 11]

RFC 3176 InMon Corporation’s sFlow September 2001

 and has the closest achievable value.

 When read, the agent must return the actual sampling rate it
 will be using (after the adjustments previously described). The
 sampling algorithm must converge so that over time the number
 of packets sampled approaches 1/Nth of the total number of
 packets in the monitored flows."
 DEFVAL { 0 }
 ::= { sFlowEntry 4 }

sFlowCounterSamplingInterval OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of seconds between successive samples of the
 counters associated with this data source. A sampling interval
 of 0 disables counter sampling."
 DEFVAL { 0 }
 ::= { sFlowEntry 5 }

sFlowMaximumHeaderSize OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of bytes that should be copied from a
 sampled packet. The agent may have an internal maximum and
 minimum permissible sizes. If an attempt is made to set this
 value outside the permissible range then the agent should
 adjust the value to the closest permissible value."
 DEFVAL { 128 }
 ::= { sFlowEntry 6 }

sFlowMaximumDatagramSize OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The maximum number of data bytes that can be sent in a single
 sample datagram. The manager should set this value to avoid
 fragmentation of the sFlow datagrams."
 DEFVAL { 1400 }
 ::= { sFlowEntry 7 }

sFlowCollectorAddressType OBJECT-TYPE
 SYNTAX InetAddressType
 MAX-ACCESS read-write

Phaal, et al. Informational [Page 12]

RFC 3176 InMon Corporation’s sFlow September 2001

 STATUS current
 DESCRIPTION
 "The type of sFlowCollectorAddress."
 DEFVAL { ipv4 }
 ::= { sFlowEntry 8 }

sFlowCollectorAddress OBJECT-TYPE
 SYNTAX InetAddress
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The IP address of the sFlow collector.
 If set to 0.0.0.0 all sampling is disabled."
 DEFVAL { "0.0.0.0" }
 ::= { sFlowEntry 9 }

sFlowCollectorPort OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The destination port for sFlow datagrams."
 DEFVAL { 6343 }
 ::= { sFlowEntry 10 }

sFlowDatagramVersion OBJECT-TYPE
 SYNTAX Integer32
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION
 "The version of sFlow datagrams that should be sent.

 When set to a value not support by the agent, the agent should
 adjust the value to the highest supported value less than the
 requested value, or return an error if no such values exist."
 DEFVAL { 4 }
 ::= { sFlowEntry 11 }

 --
 -- Compliance Statements
 --

sFlowMIBConformance OBJECT IDENTIFIER ::= { sFlowMIB 2 }
sFlowMIBGroups OBJECT IDENTIFIER ::= { sFlowMIBConformance 1 }
sFlowMIBCompliances OBJECT IDENTIFIER ::= { sFlowMIBConformance 2 }

sFlowCompliance MODULE-COMPLIANCE
 STATUS current

Phaal, et al. Informational [Page 13]

RFC 3176 InMon Corporation’s sFlow September 2001

 DESCRIPTION
 "Compliance statements for the sFlow Agent."

 MODULE -- this module
 MANDATORY-GROUPS { sFlowAgentGroup }
 OBJECT sFlowAgentAddressType
 SYNTAX InetAddressType { ipv4(1) }
 DESCRIPTION
 "Agents need only support ipv4."

 OBJECT sFlowCollectorAddressType
 SYNTAX InetAddressType { ipv4(1) }
 DESCRIPTION
 "Agents need only support ipv4."

 ::= { sFlowMIBCompliances 1 }

sFlowAgentGroup OBJECT-GROUP
 OBJECTS { sFlowVersion, sFlowAgentAddressType, sFlowAgentAddress,
 sFlowDataSource, sFlowOwner, sFlowTimeout,
 sFlowPacketSamplingRate, sFlowCounterSamplingInterval,
 sFlowMaximumHeaderSize, sFlowMaximumDatagramSize,
 sFlowCollectorAddressType, sFlowCollectorAddress,
 sFlowCollectorPort, sFlowDatagramVersion }
 STATUS current
 DESCRIPTION
 "A collection of objects for managing the generation and
 transportation of sFlow data records."
 ::= { sFlowMIBGroups 1 }

END

 The sFlow MIB references definitions from a number of existing RFCs
 [18], [19], [20] and [21].

4. sFlow Datagram Format

 The sFlow datagram format specifies a standard format for the sFlow
 Agent to send sampled data to a remote data collector.

 The format of the sFlow datagram is specified using the XDR standard
 [1]. XDR is more compact than ASN.1 and simpler for the sFlow Agent
 to encode and the sFlow Analyzer to decode.

 Samples are sent as UDP packets to the host and port specified in the
 SFLOW MIB. The lack of reliability in the UDP transport mechanism
 does not significantly affect the accuracy of the measurements
 obtained from an sFlow Agent.

Phaal, et al. Informational [Page 14]

RFC 3176 InMon Corporation’s sFlow September 2001

 o If counter samples are lost then new values will be sent during
 the next polling interval. The chance of an undetected counter
 wrap is negligible. The sFlow datagram specifies 64 bit octet
 counters, and with typical counter polling intervals between 20 to
 120 seconds, the chance of a long enough sequence of sFlow
 datagrams being lost to hide a counter wrap is very small.

 o The net effect of lost flow samples is a slight reduction in the
 effective sampling rate.

 The use of UDP reduces the amount of memory required to buffer data.
 UDP also provides a robust means of delivering timely traffic
 information during periods of intense traffic (such as a denial of
 service attack). UDP is more robust than a reliable transport
 mechanism because under overload the only effect on overall system
 performance is a slight increase in transmission delay and a greater
 number of lost packets, neither of which has a significant effect on
 an sFlow-based monitoring system. If a reliable transport mechanism
 were used then an overload would introduce long transmission delays
 and require large amounts of buffer memory on the agent.

 While the sFlow Datagram structure permits multiple samples to be
 included in each datagram, the sampling agent must not wait for a
 buffer to fill with samples before sending the sample datagram.
 sFlow sampling is intended to provide timely information on traffic.
 The agent may at most delay a sample by 1 second before it is
 required to send the datagram.

 The agent should try to piggyback counter samples on the datagram
 stream resulting from flow sampling. Before sending out a datagram
 the remaining space in the buffer can be filled with counter samples.
 The agent has discretion in the timing of its counter polling, the
 specified counter sampling intervals sFlowCounterSamplingInterval is
 a maximum, so the agent is free to sample counters early if it has
 space in a datagram. If counters must be sent in order to satisfy
 the maximum sampling interval then a datagram must be sent containing
 the outstanding counters.

 The following is the XDR description of an sFlow Datagram:

/* sFlow Datagram Version 4 */

/* Revision History
 - version 4 adds support BGP communities
 - version 3 adds support for extended_url information
*/

/* sFlow Sample types */

Phaal, et al. Informational [Page 15]

RFC 3176 InMon Corporation’s sFlow September 2001

/* Address Types */

typedef opaque ip_v4[4];
typedef opaque ip_v6[16];

enum address_type {
 IP_V4 = 1,
 IP_V6 = 2
}

union address (address_type type) {
 case IP_V4:
 ip_v4;
 case IP_V6:
 ip_v6;
}

/* Packet header data */

const MAX_HEADER_SIZE = 256; /* The maximum sampled header size. */

/* The header protocol describes the format of the sampled header */
enum header_protocol {
 ETHERNET-ISO8023 = 1,
 ISO88024-TOKENBUS = 2,
 ISO88025-TOKENRING = 3,
 FDDI = 4,
 FRAME-RELAY = 5,
 X25 = 6,
 PPP = 7,
 SMDS = 8,
 AAL5 = 9,
 AAL5-IP = 10, /* e.g., Cisco AAL5 mux */
 IPv4 = 11,
 IPv6 = 12,
 MPLS = 13
}

struct sampled_header {
 header_protocol protocol; /* Format of sampled header */
 unsigned int frame_length; /* Original length of packet before
 sampling */
 opaque header<MAX_HEADER_SIZE>; /* Header bytes */
}

/* Packet IP version 4 data */

struct sampled_ipv4 {

Phaal, et al. Informational [Page 16]

RFC 3176 InMon Corporation’s sFlow September 2001

 unsigned int length; /* The length of the IP packet excluding
 lower layer encapsulations */
 unsigned int protocol; /* IP Protocol type
 (for example, TCP = 6, UDP = 17) */
 ip_v4 src_ip; /* Source IP Address */
 ip_v4 dst_ip; /* Destination IP Address */
 unsigned int src_port; /* TCP/UDP source port number or
 equivalent */
 unsigned int dst_port; /* TCP/UDP destination port number or
 equivalent */
 unsigned int tcp_flags; /* TCP flags */
 unsigned int tos; /* IP type of service */
}
/* Packet IP version 6 data */

struct sampled_ipv6 {
 unsigned int length; /* The length of the IP packet excluding
 lower layer encapsulations */
 unsigned int protocol; /* IP next header
 (for example, TCP = 6, UDP = 17) */
 ip_v6 src_ip; /* Source IP Address */
 ip_v6 dst_ip; /* Destination IP Address */
 unsigned int src_port; /* TCP/UDP source port number or
 equivalent */
 unsigned int dst_port; /* TCP/UDP destination port number or
 equivalent */
 unsigned int tcp_flags; /* TCP flags */
 unsigned int priority; /* IP priority */
}

/* Packet data */

enum packet_information_type {
 HEADER = 1, /* Packet headers are sampled */
 IPV4 = 2, /* IP version 4 data */
 IPV6 = 3 /* IP version 6 data */
}

union packet_data_type (packet_information_type type) {
 case HEADER:
 sampled_header header;
 case IPV4:
 sampled_ipv4 ipv4;
 case IPV6:
 sampled_ipv6 ipv6;
}

Phaal, et al. Informational [Page 17]

RFC 3176 InMon Corporation’s sFlow September 2001

/* Extended data types */

/* Extended switch data */

struct extended_switch {
 unsigned int src_vlan; /* The 802.1Q VLAN id of incoming frame */
 unsigned int src_priority; /* The 802.1p priority of incoming
 frame */
 unsigned int dst_vlan; /* The 802.1Q VLAN id of outgoing frame */
 unsigned int dst_priority; /* The 802.1p priority of outgoing
 frame */
}

/* Extended router data */

struct extended_router {
 address nexthop; /* IP address of next hop router */
 unsigned int src_mask; /* Source address prefix mask bits */
 unsigned int dst_mask; /* Destination address prefix mask bits */
}

/* Extended gateway data */

enum as_path_segment_type {
 AS_SET = 1, /* Unordered set of ASs */
 AS_SEQUENCE = 2 /* Ordered set of ASs */
}

union as_path_type (as_path_segment_type) {
 case AS_SET:
 unsigned int as_set<>;
 case AS_SEQUENCE:
 unsigned int as_sequence<>;
}

struct extended_gateway {
 unsigned int as; /* Autonomous system number of router */
 unsigned int src_as; /* Autonomous system number of source */
 unsigned int src_peer_as; /* Autonomous system number of source
 peer */
 as_path_type dst_as_path<>; /* Autonomous system path to the
 destination */
 unsigned int communities<>; /* Communities associated with this
 route */
 unsigned int localpref; /* LocalPref associated with this
 route */
}

Phaal, et al. Informational [Page 18]

RFC 3176 InMon Corporation’s sFlow September 2001

/* Extended user data */

struct extended_user {
 string src_user<>; /* User ID associated with packet
 source */
 string dst_user<>; /* User ID associated with packet
 destination */

}

/* Extended URL data */

enum url_direction {
 src = 1, /* URL is associated with source
 address */
 dst = 2 /* URL is associated with destination
 address */
}

struct extended_url {
 url_direction direction; /* URL associated with packet source */
 string url<>; /* URL associated with the packet flow */
}

/* Extended data */
enum extended_information_type {
 SWITCH = 1, /* Extended switch information */
 ROUTER = 2, /* Extended router information */
 GATEWAY = 3, /* Extended gateway router information */
 USER = 4, /* Extended TACACS/RADIUS user information */
 URL = 5 /* Extended URL information */
}

union extended_data_type (extended_information_type type) {
 case SWITCH:
 extended_switch switch;
 case ROUTER:
 extended_router router;
 case GATEWAY:
 extended_gateway gateway;
 case USER:
 extended_user user;
 case URL:
 extended_url url;
}

/* Format of a single flow sample */

Phaal, et al. Informational [Page 19]

RFC 3176 InMon Corporation’s sFlow September 2001

struct flow_sample {
unsigned int sequence_number; /* Incremented with each flow sample
 generated by this source_id */
unsigned int source_id; /* sFlowDataSource encoded as follows:
 The most significant byte of the
 source_id is used to indicate the
 type of sFlowDataSource
 (0 = ifIndex,
 1 = smonVlanDataSource,
 2 = entPhysicalEntry) and the
 lower three bytes contain the
 relevant index value.*/

unsigned int sampling_rate; /* sFlowPacketSamplingRate */
unsigned int sample_pool; /* Total number of packets that could
 have been sampled (i.e., packets
 skipped by sampling process + total
 number of samples) */
unsigned int drops; /* Number times a packet was dropped
 due to lack of resources */

unsigned int input; /* SNMP ifIndex of input interface.
 0 if interface is not known. */
unsigned int output; /* SNMP ifIndex of output interface,
 0 if interface is not known.
 Set most significant bit to
 indicate multiple destination
 interfaces (i.e., in case of
 broadcast or multicast)
 and set lower order bits to
 indicate number of destination
 interfaces.
 Examples:
 0x00000002 indicates ifIndex =
 2
 0x00000000 ifIndex unknown.
 0x80000007 indicates a packet
 sent to 7
 interfaces.
 0x80000000 indicates a packet
 sent to an unknown
 number of interfaces
 greater than 1. */

 packet_data_type packet_data; /* Information about sampled
 packet */
 extended_data_type extended_data<>; /* Extended flow information */
}

Phaal, et al. Informational [Page 20]

RFC 3176 InMon Corporation’s sFlow September 2001

/* Counter types */

/* Generic interface counters - see RFC 2233 */

struct if_counters {
 unsigned int ifIndex;
 unsigned int ifType;
 unsigned hyper ifSpeed;
 unsigned int ifDirection; /* derived from MAU MIB (RFC 2668)
 0 = unknown, 1=full-duplex,
 2=half-duplex, 3 = in, 4=out */
 unsigned int ifStatus; /* bit field with the following bits
 assigned
 bit 0 = ifAdminStatus
 (0 = down, 1 = up)
 bit 1 = ifOperStatus
 (0 = down, 1 = up) */
 unsigned hyper ifInOctets;
 unsigned int ifInUcastPkts;
 unsigned int ifInMulticastPkts;
 unsigned int ifInBroadcastPkts;
 unsigned int ifInDiscards;
 unsigned int ifInErrors;
 unsigned int ifInUnknownProtos;
 unsigned hyper ifOutOctets;
 unsigned int ifOutUcastPkts;
 unsigned int ifOutMulticastPkts;
 unsigned int ifOutBroadcastPkts;
 unsigned int ifOutDiscards;
 unsigned int ifOutErrors;
 unsigned int ifPromiscuousMode;
}

/* Ethernet interface counters - see RFC 2358 */

struct ethernet_counters {
 if_counters generic;
 unsigned int dot3StatsAlignmentErrors;
 unsigned int dot3StatsFCSErrors;
 unsigned int dot3StatsSingleCollisionFrames;
 unsigned int dot3StatsMultipleCollisionFrames;
 unsigned int dot3StatsSQETestErrors;
 unsigned int dot3StatsDeferredTransmissions;
 unsigned int dot3StatsLateCollisions;
 unsigned int dot3StatsExcessiveCollisions;
 unsigned int dot3StatsInternalMacTransmitErrors;
 unsigned int dot3StatsCarrierSenseErrors;
 unsigned int dot3StatsFrameTooLongs;

Phaal, et al. Informational [Page 21]

RFC 3176 InMon Corporation’s sFlow September 2001

 unsigned int dot3StatsInternalMacReceiveErrors;
 unsigned int dot3StatsSymbolErrors;
}

/* FDDI interface counters - see RFC 1512 */
struct fddi_counters {
 if_counters generic;
}

/* Token ring counters - see RFC 1748 */

struct tokenring_counters {
 if_counters generic;
 unsigned int dot5StatsLineErrors;
 unsigned int dot5StatsBurstErrors;
 unsigned int dot5StatsACErrors;
 unsigned int dot5StatsAbortTransErrors;
 unsigned int dot5StatsInternalErrors;
 unsigned int dot5StatsLostFrameErrors;
 unsigned int dot5StatsReceiveCongestions;
 unsigned int dot5StatsFrameCopiedErrors;
 unsigned int dot5StatsTokenErrors;
 unsigned int dot5StatsSoftErrors;
 unsigned int dot5StatsHardErrors;
 unsigned int dot5StatsSignalLoss;
 unsigned int dot5StatsTransmitBeacons;
 unsigned int dot5StatsRecoverys;
 unsigned int dot5StatsLobeWires;
 unsigned int dot5StatsRemoves;
 unsigned int dot5StatsSingles;
 unsigned int dot5StatsFreqErrors;
}

/* 100 BaseVG interface counters - see RFC 2020 */

struct vg_counters {
 if_counters generic;
 unsigned int dot12InHighPriorityFrames;
 unsigned hyper dot12InHighPriorityOctets;
 unsigned int dot12InNormPriorityFrames;
 unsigned hyper dot12InNormPriorityOctets;
 unsigned int dot12InIPMErrors;
 unsigned int dot12InOversizeFrameErrors;
 unsigned int dot12InDataErrors;
 unsigned int dot12InNullAddressedFrames;
 unsigned int dot12OutHighPriorityFrames;
 unsigned hyper dot12OutHighPriorityOctets;
 unsigned int dot12TransitionIntoTrainings;

Phaal, et al. Informational [Page 22]

RFC 3176 InMon Corporation’s sFlow September 2001

 unsigned hyper dot12HCInHighPriorityOctets;
 unsigned hyper dot12HCInNormPriorityOctets;
 unsigned hyper dot12HCOutHighPriorityOctets;
}

/* WAN counters */

struct wan_counters {
 if_counters generic;
}

/* VLAN counters */

struct vlan_counters {
 unsigned int vlan_id;
 unsigned hyper octets;
 unsigned int ucastPkts;
 unsigned int multicastPkts;
 unsigned int broadcastPkts;
 unsigned int discards;
}

/* Counter data */

enum counters_version {
 GENERIC = 1,
 ETHERNET = 2,
 TOKENRING = 3,
 FDDI = 4,
 VG = 5,
 WAN = 6,
 VLAN = 7
}

union counters_type (counters_version version) {
 case GENERIC:
 if_counters generic;
 case ETHERNET:
 ethernet_counters ethernet;
 case TOKENRING:
 tokenring_counters tokenring;
 case FDDI:
 fddi_counters fddi;
 case VG:
 vg_counters vg;
 case WAN:
 wan_counters wan;
 case VLAN:

Phaal, et al. Informational [Page 23]

RFC 3176 InMon Corporation’s sFlow September 2001

 vlan_counters vlan;
}

/* Format of a single counter sample */

struct counters_sample {
 unsigned int sequence_number; /* Incremented with each counter
 sample generated by this
 source_id */
 unsigned int source_id; /* sFlowDataSource encoded as
 follows:
 The most significant byte of the
 source_id is used to indicate the
 type of sFlowDataSource
 (0 = ifIndex,
 1 = smonVlanDataSource,
 2 = entPhysicalEntry) and the
 lower three
 bytes contain the relevant
 index value.*/

 unsigned int sampling_interval; /* sFlowCounterSamplingInterval*/
 counters_type counters;
}

/* Format of a sample datagram */

enum sample_types {
 FLOWSAMPLE = 1,
 COUNTERSSAMPLE = 2
}

union sample_type (sample_types sampletype) {
 case FLOWSAMPLE:
 flow_sample flowsample;
 case COUNTERSSAMPLE:
 counters_sample counterssample;
}

struct sample_datagram_v4 {
 address agent_address /* IP address of sampling agent,
 sFlowAgentAddress. */
 unsigned int sequence_number; /* Incremented with each sample
 datagram generated */
 unsigned int uptime; /* Current time (in milliseconds since
 device last booted). Should be set
 as close to datagram transmission
 time as possible.*/

Phaal, et al. Informational [Page 24]

RFC 3176 InMon Corporation’s sFlow September 2001

 sample_type samples<>; /* An array of flow, counter and delay
 samples */
}

enum datagram_version {
 VERSION4 = 4
}

union sample_datagram_type (datagram_version version) {
 case VERSION4:
 sample_datagram_v4 datagram;
}

struct sample_datagram {
 sample_datagram_type version;
}

 The sFlow Datagram specification makes use of definitions from a
 number of existing RFCs [22], [23], [24], [25], [26], [27] and [28].

5. Security Considerations

 Deploying a traffic monitoring system raises a number of security
 related issues. sFlow does not provide specific security mechanisms,
 relying instead on proper deployment and configuration to maintain an
 adequate level of security.

 While the deployment of traffic monitoring systems does create some
 risk, it also provides a powerful means of detecting and tracing
 unauthorized network activity.

 This section is intended to provide information that will help
 understand potential risks and configuration options for mitigating
 those risks.

5.1 Control

 The sFlow MIB is used to configure the generation of sFlow samples.
 The security of SNMP, with access control lists, is usually
 considered adequate in an enterprise setting. However, there are
 situations when these security measures are insufficient (for example
 a WAN router) and SNMP configuration control will be disabled.

 When SNMP is disabled, a command line interface is typically
 provided. The following arguments are required to configure sFlow
 sampling on an interface.

Phaal, et al. Informational [Page 25]

RFC 3176 InMon Corporation’s sFlow September 2001

 -sFlowDataSource <source>
 -sFlowPacketSamplingRate <rate>
 -sFlowCounterSamplingInterval <interval>
 -sFlowMaximumHeaderSize <header size>
 -sFlowMaximumDatagramSize <datagram size>
 -sFlowCollectorAddress <address>
 -sFlowCollectorPort <port>

5.2 Transport

 Traffic information is sent unencrypted across the network from the
 sFlow Agent to the sFlow Analyzer and is thus vulnerable to
 eavesdropping. This risk can be limited by creating a secure
 measurement network and routing the sFlow Datagrams over this
 network. The choice of technology for creating the secure
 measurement network is deployment specific, but could include the use
 of VLANs or VPN tunnels.

 The sFlow Analyzer is vulnerable to attacks involving spoofed sFlow
 Datagrams. To limit this vulnerability the sFlow Analyzer should
 check sequence numbers and verify source addresses. If a secure
 measurement network has been constructed then only sFlow Datagrams
 received from that network should be processed.

5.3 Confidentiality

 Traffic information can reveal confidential information about
 individual network users. The degree of visibility of application
 level data can be controlled by limiting the number of header bytes
 captured by the sFlow agent. In addition, packet sampling makes it
 virtually impossible to capture sequences of packets from an
 individual transaction.

 The traffic patterns discernible by decoding the sFlow Datagrams in
 the sFlow Analyzer can reveal details of an individual’s network
 related activities and due care should be taken to secure access to
 the sFlow Analyzer.

6. References

 [1] Sun Microsystems, Inc., "XDR: External Data Representation
 Standard", RFC 1014, June 1987.

 [2] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture
 for Describing SNMP Management Frameworks", RFC 2571, April
 1999.

Phaal, et al. Informational [Page 26]

RFC 3176 InMon Corporation’s sFlow September 2001

 [3] Rose, M. and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based Internets", STD 16, RFC
 1155, May 1990.

 [4] Rose, M. and K. McCloghrie, "Concise MIB Definitions", STD 16,
 RFC 1212, March 1991.

 [5] Rose, M., "A Convention for Defining Traps for use with the
 SNMP", RFC 1215, March 1991.

 [6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Textual Conventions for SMIv2", STD 58,
 RFC 2579, April 1999.

 [8] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose,
 M. and S. Waldbusser, "Conformance Statements for SMIv2", STD
 58, RFC 2580, April 1999.

 [9] Case, J., Fedor, M., Schoffstall, M. and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, May 1990.

 [10] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Introduction to Community-based SNMPv2", RFC 1901, January
 1996.

 [11] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser,
 "Transport Mappings for Version 2 of the Simple Network
 Management Protocol (SNMPv2)", RFC 1906, January 1996.

 [12] Case, J., Harrington D., Presuhn R. and B. Wijnen, "Message
 Processing and Dispatching for the Simple Network Management
 Protocol (SNMP)", RFC 2572, April 1999.

 [13] Blumenthal, U. and B. Wijnen, "User-based Security Model (USM)
 for version 3 of the Simple Network Management Protocol
 (SNMPv3)", RFC 2574, April 1999.

 [14] Case, J., McCloghrie, K., Rose, M. and S. Waldbusser, "Protocol
 Operations for Version 2 of the Simple Network Management
 Protocol (SNMPv2)", RFC 1905, January 1996.

 [15] Levi, D., Meyer, P. and B. Stewart, "SNMPv3 Applications", RFC
 2573, April 1999.

Phaal, et al. Informational [Page 27]

RFC 3176 InMon Corporation’s sFlow September 2001

 [16] Wijnen, B., Presuhn, R. and K. McCloghrie, "View-based Access
 Control Model (VACM) for the Simple Network Management Protocol
 (SNMP)", RFC 2575, April 1999.

 [17] Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction
 to Version 3 of the Internet-standard Network Management
 Framework", RFC 2570, April 1999.

 [18] Waldbusser, S., "Remote Network Monitoring Management
 Information Base", RFC 2819, May 2000.

 [19] Waterman, R., Lahaye, B., Romascanu, D. and S. Waldbusser,
 "Remote Network Monitoring MIB Extensions for Switched Networks
 Version 1.0", RFC 2613, June 1999.

 [20] Daniele, M., Haberman, B., Routhier, S. and J. Schoenwaelder,
 "Textual Conventions for Internet Network Addresses", RFC 2851,
 June 2000.

 [21] Brownlee, N., "Traffic Flow Measurement: Meter MIB", RFC 2720,
 October 1999.

 [22] Smith, A., Flick, J., de Graaf, K., Romanscanu, D., McMaster,
 D., McCloghrie, K. and S. Roberts, "Definition of Managed
 Objects for IEEE 802.3 Medium Attachment Units (MAUs)", RFC
 2668, August 1999.

 [23] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB
 using SMIv2", RFC 2233, November 1997.

 [24] Flick, J. and J. Johnson, "Definition of Managed Objects for
 the Ethernet-like Interface Types", RFC 2358, June 1998.

 [25] Case, J., "FDDI Management Information Base", RFC 1512,
 September 1993.

 [26] McCloghrie, K. and E. Decker, "IEEE 802.5 MIB using SMIv2", RFC
 1748, December 1994.

 [27] Flick, J., "Definitions of Managed Objects for IEEE 802.12
 Interfaces", RFC 2020, October 1996.

 [28] Willis, S., Burruss, J. and J. Chu, "Definitions of Managed
 Objects for the Fourth Version of the Border Gateway Protocol
 (BGP-4) using SMIv2", RFC 1657, July 1994.

Phaal, et al. Informational [Page 28]

RFC 3176 InMon Corporation’s sFlow September 2001

7. Authors’ Addresses

 Peter Phaal
 InMon Corporation
 1404 Irving Street
 San Francisco, CA 94122

 Phone: (415) 661-6343
 EMail: peter_phaal@INMON.COM

 Sonia Panchen
 InMon Corporation
 1404 Irving Street
 San Francisco, CA 94122

 Phone: (415) 661-6343
 EMail: sonia_panchen@INMON.COM

 Neil McKee
 InMon Corporation
 1404 Irving Street
 San Francisco, CA 94122

 Phone: (415) 661-6343
 EMail: neil_mckee@INMON.COM

Phaal, et al. Informational [Page 29]

RFC 3176 InMon Corporation’s sFlow September 2001

8. Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF’s procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Phaal, et al. Informational [Page 30]

RFC 3176 InMon Corporation’s sFlow September 2001

9. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Phaal, et al. Informational [Page 31]

