
Network Working Group J. Pawling
Request for Comments: 2876 WGSI, A Getronics Company
Category: Informational July 2000

 Use of the KEA and SKIPJACK Algorithms in CMS

Status of this Memo

 This memo provides information for the Internet community. It does
 not specify an Internet standard of any kind. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

 This document describes the conventions for using the Key Exchange
 Algorithm (KEA) and SKIPJACK encryption algorithm in conjunction with
 the Cryptographic Message Syntax [CMS] enveloped-data and encrypted-
 data content types.

1. Introduction

 Throughout this document, the terms MUST, MUST NOT, SHOULD and MAY
 are used in capital letters. This conforms to the definitions in
 [MUSTSHOULD]. [MUSTSHOULD] defines the use of these key words to help
 make the intent of standards track documents as clear as possible.
 The same key words are used in this document to help implementers
 achieve interoperability. Software that claims compliance with this
 document MUST provide the capabilities as indicated by the MUST, MUST
 NOT, SHOULD and MAY terms. The KEA and SKIPJACK cryptographic
 algorithms are described in [SJ-KEA].

2. Content Encryption Process

 This section applies to the construction of both the enveloped-data
 and encrypted-data content types. Compliant software MUST meet the
 requirements stated in [CMS] Section 6.3, "Content-encryption
 Process". The input to the encryption process MUST be padded to a
 multiple of eight octets using the padding rules described in [CMS]
 Section 6.3. The content MUST be encrypted as a single string using
 the SKIPJACK algorithm in 64-bit Cipher Block Chaining (CBC) mode
 using randomly-generated 8-byte Initialization Vector (IV) and 80-bit
 SKIPJACK content-encryption key (CEK) values.

Pawling Informational [Page 1]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

3. Content Decryption Process

 This section applies to the processing of both the enveloped-data and
 encrypted-data content types. The encryptedContent MUST be decrypted
 as a single string using the SKIPJACK algorithm in 64-bit CBC mode.
 The 80-bit SKIPJACK CEK and the 8-byte IV MUST be used as inputs to
 the SKIPJACK decryption process. Following decryption, the padding
 MUST be removed from the decrypted data. The padding rules are
 described in [CMS] Section 6.3, "Content-encryption Process".

4. Enveloped-data Conventions

 The CMS enveloped-data content type consists of an encrypted content
 and wrapped CEKs for one or more recipients. Compliant software MUST
 meet the requirements for constructing an enveloped-data content type
 stated in [CMS] Section 6, "Enveloped-data Content Type". [CMS]
 Section 6 should be studied before reading this section, because this
 section does not repeat the [CMS] text.

 An 8-byte IV and 80-bit CEK MUST be randomly generated for each
 instance of an enveloped-data content type as inputs to the SKIPJACK
 algorithm for use to encrypt the content. The SKIPJACK CEK MUST only
 be used for encrypting the content of a single instance of an
 enveloped-data content type.

 KEA and SKIPJACK can be used with the enveloped-data content type
 using either of the following key management techniques defined in
 [CMS] Section 6:

 1) Key Agreement: The SKIPJACK CEK is uniquely wrapped for each
 recipient using a pairwise symmetric key-encryption key (KEK)
 generated using KEA using the originator’s private KEA key,
 recipient’s public KEA key and other values. Section 4.2 provides
 additional details.

 2) "Previously Distributed" Symmetric KEK: The SKIPJACK CEK is
 wrapped using a "previously distributed" symmetric KEK (such as a
 Mail List Key). The methods by which the symmetric KEK is
 generated and distributed are beyond the scope of this document.
 Section 4.3 provides more details.

 [CMS] Section 6 also defines the concept of the key transport key
 management technique. The key transport technique MUST NOT be used
 with KEA.

Pawling Informational [Page 2]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

4.1. EnvelopedData Fields

 The enveloped-data content type is Abstract Syntax Notation.1 (ASN.1)
 encoded using the EnvelopedData syntax. The fields of the
 EnvelopedData syntax must be populated as follows:

 The EnvelopedData version MUST be 2.

 If key agreement is being used, then the EnvelopedData originatorInfo
 field SHOULD be present and SHOULD include the originator’s KEA X.509
 v3 certificate containing the KEA public key associated with the KEA
 private key used to form each pairwise symmetric KEK used to wrap
 each copy of the SKIPJACK CEK. The issuers’ X.509 v3 certificates
 required to form the complete certification path for the originator’s
 KEA X.509 v3 certificate MAY be included in the EnvelopedData
 originatorInfo field. Self-signed certificates SHOULD NOT be included
 in the EnvelopedData originatorInfo field.

 The EnvelopedData RecipientInfo CHOICE is dependent on the key
 management technique used. Sections 4.2 and 4.3 provide more
 information.

 The EnvelopedData encryptedContentInfo contentEncryptionAlgorithm
 algorithm field MUST be the id-fortezzaConfidentialityAlgorithm
 object identifier (OID). The EnvelopedData encryptedContentInfo
 contentEncryptionAlgorithm parameters field MUST include the random
 8-byte IV used as the input to the content encryption process.

 The EnvelopedData unprotectedAttrs MAY be present.

4.2. Key Agreement

 This section describes the conventions for using KEA and SKIPJACK
 with the CMS enveloped-data content type to support key agreement.
 When key agreement is used, then the RecipientInfo
 keyAgreeRecipientInfo CHOICE MUST be used.

 If the EnvelopedData originatorInfo field does not include the
 originator’s KEA X.509 v3 certificate, then each recipientInfos
 KeyAgreementRecipientInfo originator field MUST include the
 issuerAndSerialNumber CHOICE identifying the originator’s KEA X.509
 v3 certificate. If the EnvelopedData originatorInfo field includes
 the originator’s KEA X.509 v3 certificate, then each recipientInfos
 KeyAgreementRecipientInfo originator field MUST include either the
 subjectKeyIdentifier CHOICE containing the value from the
 subjectKeyIdentifier extension of the originator’s KEA X.509 v3
 certificate or the issuerAndSerialNumber CHOICE identifying the

Pawling Informational [Page 3]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 originator’s KEA X.509 v3 certificate. To minimize the size of the
 EnvelopedData, it is recommended that the subjectKeyIdentifier CHOICE
 be used.

 In some environments, the KeyAgreementRecipientInfo originator field
 MAY include the originatorKey CHOICE. The originatorKey CHOICE
 SHOULD NOT be used with KEA for e-mail transactions. Within a
 controlled security architecture, a module may produce KEA key pairs
 for use in conjunction with internal/local storage of encrypted data.
 In this case, there may not be an X.509 certificate associated with a
 (possibly) short term or one time use public KEA key. When
 originatorKey is used, then the KEA public key MUST be conveyed in
 the publicKey BIT STRING as specified in [KEA] Section 3.1.2. The
 originatorKey algorithm identifier MUST be the id-
 keyExchangeAlgorithm OID. The originatorKey algorithm parameters
 field MUST contain the KEA "domain identifier" (ASN.1 encoded as an
 OCTET STRING) identifying the KEA algorithm parameters (i.e., p/q/g
 values) associated with the KEA public key. [KEA] Section 3.1.1
 describes the method for computing the KEA domain identifier value.

4.2.1. SKIPJACK CEK Wrap Process

 The SKIPJACK CEK is uniquely wrapped for each recipient of the
 EnvelopedData using a pairwise KEK generated using the KEA material
 of the originator and the recipient along with the originator’s User
 Keying Material (UKM) (i.e. Ra). The CMS EnvelopedData syntax
 provides two options for wrapping the SKIPJACK CEK for each recipient
 using a KEA-generated KEK. The "shared Originator UKM" option SHOULD
 be used when constructing EnvelopedData objects. The "unique
 originator UKM" option MAY be used when constructing EnvelopedData
 objects. Compliant software MUST be capable of processing
 EnvelopedData objects constructed using both options.

 1) Shared Originator UKM Option: CMS provides the ability for a
 single, shared originator’s UKM to be used to generate each pairwise
 KEK used to wrap the SKIPJACK CEK for each recipient. When using the
 shared originator UKM option, a single RecipientInfo
 KeyAgreeRecipientInfo structure MUST be constructed to contain the
 wrapped SKIPJACK CEKs for all of the KEA recipients sharing the same
 KEA parameters. The KeyAgreeRecipientInfo structure includes
 multiple RecipientEncryptedKey fields that each contain the SKIPJACK
 CEK wrapped for a specific recipient.

Pawling Informational [Page 4]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 2) Unique Originator UKM Option: CMS also provides the ability for a
 unique originator UKM to be used to generate each pairwise KEK used
 to wrap the SKIPJACK CEK for each recipient. When using the unique
 originator UKM option, a separate RecipientInfo KeyAgreeRecipientInfo
 structure MUST be constructed for each recipient. Each
 KeyAgreeRecipientInfo structure includes a single
 RecipientEncryptedKey field containing the SKIPJACK CEK wrapped for
 the recipient. This option requires more overhead than the shared
 UKM option because the KeyAgreeRecipientInfo fields (i.e. version,
 originator, ukm, keyEncryptionAlgorithm) must be repeated for each
 recipient.

 The next two paragraphs apply to both options.

 The KeyAgreeRecipientInfo keyEncryptionAlgorithm algorithm field MUST
 include the id-kEAKeyEncryptionAlgorithm OID. The
 KeyAgreeRecipientInfo keyEncryptionAlgorithm parameters field MUST
 contain a KeyWrapAlgorithm as specified in [CMS] Appendix A, "ASN.1
 Module". The algorithm field of KeyWrapAlgorithm MUST be the id-
 fortezzaWrap80 OID indicating that the FORTEZZA 80-bit wrap function
 is used to wrap the 80-bit SKIPJACK CEK. Since the FORTEZZA 80-bit
 wrap function includes an integrity check value, the wrapped SKIPJACK
 key is 96 bits long. The parameters field of KeyWrapAlgorithm MUST
 be absent.

 If the originator is not already an explicit recipient, then a copy
 of the SKIPJACK CEK SHOULD be wrapped for the originator and included
 in the EnvelopedData. This allows the originator to decrypt the
 contents of the EnvelopedData.

4.2.1.1. SKIPJACK CEK Wrap Process Using A Shared Originator UKM Value

 This section describes how a shared originator UKM value is used as
 an input to KEA to generate each pairwise KEK used to wrap the
 SKIPJACK CEK for each recipient.

 When using the shared originator UKM option, a single RecipientInfo
 KeyAgreeRecipientInfo structure MUST be constructed to contain the
 wrapped SKIPJACK CEKs for all of the KEA recipients using the same
 set of KEA parameters. If all recipients’ KEA public keys were
 generated using the same set of KEA parameters, then there MUST only
 be a single RecipientInfo KeyAgreeRecipientInfo structure for all of
 the KEA recipients. If the recipients’ KEA public keys were
 generated using different sets of KEA parameters, then multiple
 RecipientInfo KeyAgreeRecipientInfo fields MUST be constructed
 because the originatorIdentifierOrKey will be different for each
 distinct set of recipients’ KEA parameters.

Pawling Informational [Page 5]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 A unique 128-byte originator’s UKM MUST be generated for each
 distinct set of recipients’ KEA parameters. The originator’s UKM
 MUST be placed in each KeyAgreeRecipientInfo ukm OCTET STRING.

 The originator’s and recipient’s KEA parameters MUST be identical to
 use KEA to successfully generate a pairwise KEK. [KEA] describes how
 a KEA public key is conveyed in an X.509 v3 certificate. [KEA]
 states that the KEA parameters are not included in KEA certificates;
 instead, a "domain identifier" is supplied in the
 subjectPublicKeyInfo algorithm parameters field of every KEA
 certificate. The values of the KEA domain identifiers in the
 originator’s and recipient’s KEA X.509 v3 certificates can be
 compared to determine if the originator’s and recipient’s KEA
 parameters are identical.

 The following steps MUST be repeated for each recipient:

 1) KEA MUST be used to generate the pairwise KEK based on the
 originator’s UKM, originator’s private KEA key, recipient’s 128
 byte public KEA key (obtained from the recipient’s KEA X.509 v3
 certificate) and the recipient’s 128-byte public KEA key used as
 the Rb value.

 2) The SKIPJACK CEK MUST be wrapped using the KEA-generated pairwise
 KEK as input to the FORTEZZA 80-bit wrap function. The FORTEZZA
 80-bit wrap function takes the 80-bit SKIPJACK CEK along with a
 16-bit integrity checkvalue and produces a 96-bit result using the
 KEA-generated pairwise KEK.

 3) A new RecipientEncryptedKey SEQUENCE MUST be constructed for the
 recipient.

 4) The value of the subjectKeyIdentifier extension from the
 recipient’s KEA X.509 v3 certificate MUST be placed in the
 recipient’s RecipientEncryptedKey rid rKeyId subjectKeyIdentifier
 field. The KeyAgreeRecipientIdentifier CHOICE MUST be rKeyId.
 The date and other fields MUST be absent from the
 recipientEncryptedKey rid rKeyId SEQUENCE.

 5) The wrapped SKIPJACK CEK MUST be placed in the recipient’s
 RecipientEncryptedKey encryptedKey OCTET STRING.

 6) The recipient’s RecipientEncryptedKey MUST be included in the
 KeyAgreeRecipientInfo recipientEncryptedKeys SEQUENCE OF
 RecipientEncryptedKey.

Pawling Informational [Page 6]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

4.2.1.2. SKIPJACK CEK Wrap Process Using Unique Originator UKM Values

 This section describes how a unique originator UKM value is generated
 for each recipient to be used as an input to KEA to generate that
 recipient’s pairwise KEK.

 The following steps MUST be repeated for each recipient:

 1) A new RecipientInfo KeyAgreeRecipientInfo structure MUST be
 constructed.

 2) A unique 128-byte originator’s UKM MUST be generated. The
 originator’s UKM MUST be placed in the KeyAgreeRecipientInfo ukm
 OCTET STRING.

 3) KEA MUST be used to generate the pairwise KEK based on the
 originator’s UKM, originator’s private KEA key, recipient’s 128-
 byte public KEA key and recipient’s 128-byte public KEA key used
 as the Rb value.

 4) The SKIPJACK CEK MUST be wrapped using the KEA-generated pairwise
 KEK as input to the FORTEZZA 80-bit wrap function. The FORTEZZA
 80-bit wrap function takes the 80-bit SKIPJACK CEK along with a
 16-bit integrity check value and produces a 96-bit result using
 the KEA-generated pairwise KEK.

 5) A new RecipientEncryptedKey SEQUENCE MUST be constructed.

 6) The value of the subjectKeyIdentifier extension from the
 recipient’s KEA X.509 v3 certificate MUST be placed in the
 RecipientEncryptedKey rid rKeyId subjectKeyIdentifier field. The
 KeyAgreeRecipientIdentifier CHOICE MUST be rKeyId. The date and
 other fields MUST be absent from the RecipientEncryptedKey rid
 rKeyId SEQUENCE.

 7) The wrapped SKIPJACK CEK MUST be placed in the
 RecipientEncryptedKey encryptedKey OCTET STRING.

 8) The recipient’s RecipientEncryptedKey MUST be the only
 RecipientEncryptedKey present in the KeyAgreeRecipientInfo
 recipientEncryptedKeys SEQUENCE OF RecipientEncryptedKey.

 9) The RecipientInfo containing the recipient’s KeyAgreeRecipientInfo
 MUST be included in the EnvelopedData RecipientInfos SET OF
 RecipientInfo.

Pawling Informational [Page 7]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

4.2.2. SKIPJACK CEK Unwrap Process

 This section describes the recipient processing using KEA to generate
 the SKIPJACK KEK and the subsequent decryption of the SKIPJACK CEK.

 1) Compliant software MUST be capable of processing EnvelopedData
 objects constructed using both the shared and the unique
 originator UKM options. To support the shared UKM option, the
 receiving software MUST be capable of searching for the
 recipient’s RecipientEncryptedKey in a KeyAgreeRecipientInfo
 recipientEncryptedKeys SEQUENCE OF RecipientEncryptedKey. To
 support the unique UKM option, the receiving software MUST be
 capable of searching for the recipient’s RecipientEncryptedKey in
 the EnvelopedData recipientInfos SET OF RecipientInfo, with each
 RecipientInfo containing exactly one RecipientEncryptedKey. For
 each RecipientEncryptedKey, if the rid rkeyId CHOICE is present,
 then the receiving software MUST attempt to match the value of the
 subjectKeyIdentifier extension from the recipient’s KEA X.509 v3
 certificate with the RecipientEncryptedKey rid rKeyId
 subjectKeyIdentifier field. If the rid issuerAndSerialNumber
 CHOICE is present, then the receiving software MUST attempt to
 match the values of the issuer name and serial number from the
 recipient’s KEA X.509 v3 certificate with the
 RecipientEncryptedKey rid issuerAndSerialNumber field.

 2) The receiving software MUST extract the originator’s UKM from the
 ukm OCTET STRING contained in the same KeyAgreeRecipientInfo that
 includes the recipient’s RecipientEncryptedKey.

 3) The receiving software MUST locate the originator’s KEA X.509 v3
 certificate identified by the originator field contained in the
 same KeyAgreeRecipientInfo that includes the recipient’s
 RecipientEncryptedKey.

 4) KEA MUST be used to generate the pairwise KEK based on the
 originator’s UKM, originator’s 128-byte public KEA key (extracted
 from originator’s KEA X.509 v3 certificate), recipient’s private
 KEA key (associated with recipient’s KEA X.509 v3 certificate
 identified by the RecipientEncryptedKey rid field) and the
 originator’s 128-byte public KEA key used as the Rb value.

 5) The SKIPJACK CEK MUST be unwrapped using the KEA-generated
 pairwise KEK as input to the FORTEZZA 80-bit unwrap function.

Pawling Informational [Page 8]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 6) The unwrapped 80-bit SKIPJACK CEK resulting from the SKIPJACK CEK
 unwrap process and the 8-byte IV obtained from the EnvelopedData
 encryptedContentInfo contentEncryptionAlgorithm parameters field
 are used as inputs to the SKIPJACK content decryption process to
 decrypt the EnvelopedData encryptedContent.

4.3. "Previously Distributed" Symmetric KEK

 This section describes the conventions for using SKIPJACK with the
 CMS enveloped-data content type to support "previously distributed"
 symmetric KEKs. When a "previously distributed" symmetric KEK is
 used to wrap the SKIPJACK CEK, then the RecipientInfo
 KEKRecipientInfo CHOICE MUST be used. The methods used to generate
 and distribute the symmetric KEK are beyond the scope of this
 document.

 The KEKRecipientInfo fields MUST be populated as specified in [CMS]
 Section 6.2.3, "KEKRecipientInfo Type". The KEKRecipientInfo
 keyEncryptionAlgorithm algorithm field MUST be the id-fortezzaWrap80
 OID indicating that the FORTEZZA 80-bit wrap function is used to wrap
 the 80-bit SKIPJACK CEK. The KEKRecipientInfo keyEncryptionAlgorithm
 parameters field MUST be absent. The KEKRecipientInfo encryptedKey
 field MUST include the SKIPJACK CEK wrapped using the "previously
 distributed" symmetric KEK as input to the FORTEZZA 80-bit wrap
 function.

5. Encrypted-data Conventions

 The CMS encrypted-data content type consists of an encrypted content,
 but no recipient information. The method for conveying the SKIPJACK
 CEK required to decrypt the encrypted-data encrypted content is
 beyond the scope of this document. Compliant software MUST meet the
 requirements for constructing an encrypted-data content type stated
 [CMS] Section 8, "Encrypted-data Content Type". [CMS] Section 8
 should be studied before reading this section, because this section
 does not repeat the [CMS] text.

 The encrypted-data content type is ASN.1 encoded using the
 EncryptedData syntax. The fields of the EncryptedData syntax must be
 populated as follows:

 The EncryptedData version MUST be set according to [CMS] Section 8.

 The EncryptedData encryptedContentInfo contentEncryptionAlgorithm
 algorithm field MUST be the id-fortezzaConfidentialityAlgorithm OID.
 The EncryptedData encryptedContentInfo contentEncryptionAlgorithm
 parameters field MUST include the random 8-byte IV used as the input
 to the content encryption process.

Pawling Informational [Page 9]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 The EncryptedData unprotectedAttrs MAY be present.

6. FORTEZZA 80-bit Wrap Function

 The United States Government has not published the description of the
 FORTEZZA 80-bit wrap function.

7. SMIMECapabilities Attribute Conventions

 RFC 2633 [MSG], Section 2.5.2 defines the SMIMECapabilities signed
 attribute (defined as a SEQUENCE of SMIMECapability SEQUNCEs) to be
 used to specify a partial list of algorithms that the software
 announcing the SMIMECapabilities can support. When constructing a
 signedData object, compliant software MAY include the
 SMIMECapabilities signed attribute announcing that it supports the
 KEA and SKIPJACK algorithms.

 The SMIMECapability SEQUENCE representing KEA MUST include the id-
 kEAKeyEncryptionAlgorithm OID in the capabilityID field and MUST
 include a KeyWrapAlgorithm SEQUENCE in the parameters field. The
 algorithm field of KeyWrapAlgorithm MUST be the id-fortezzaWrap80
 OID. The parameters field of KeyWrapAlgorithm MUST be absent. The
 SMIMECapability SEQUENCE for KEA SHOULD be included in the key
 management algorithms portion of the SMIMECapabilities list. The
 SMIMECapability SEQUENCE representing KEA MUST be DER-encoded as the
 following hexadecimal string:

 3018 0609 6086 4801 6502 0101 1830 0b06 0960 8648 0165 0201 0117

 The SMIMECapability SEQUENCE representing SKIPJACK MUST include the
 id-fortezzaConfidentialityAlgorithm OID in the capabilityID field and
 the parameters field MUST be absent. The SMIMECapability SEQUENCE
 for SKIPJACK SHOULD be included in the symmetric encryption
 algorithms portion of the SMIMECapabilities list. The
 SMIMECapability SEQUENCE representing SKIPJACK MUST be DER-encoded as
 the following hexadecimal string:

 300b 0609 6086 4801 6502 0101 0400

8. Object Identifier Definitions

 The following OIDs are specified in [INFO], but are repeated here for
 the reader’s convenience:

 id-keyExchangeAlgorithm OBJECT IDENTIFIER ::= {joint-iso-ccitt(2)
 country(16) us(840) organization(1) gov(101) dod(2) infosec(1)
 algorithms(1) keyExchangeAlgorithm (22)}

Pawling Informational [Page 10]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 id-fortezzaWrap80 OBJECT IDENTIFIER ::= {joint-iso-ccitt(2)
 country(16) us(840) organization(1) gov(101) dod(2) infosec(1)
 algorithms(1) fortezzaWrap80Algorithm (23)}

 id-kEAKeyEncryptionAlgorithm OBJECT IDENTIFIER ::= {joint-iso-
 ccitt(2) country(16) us(840) organization(1) gov(101) dod(2)
 infosec(1) algorithms(1) kEAKeyEncryptionAlgorithm (24)}

 id-fortezzaConfidentialityAlgorithm OBJECT IDENTIFIER ::= {joint-
 iso-ccitt(2) country(16) us(840) organization(1) gov(101) dod(2)
 infosec(1) algorithms(1) fortezzaConfidentialityAlgorithm (4)}

 As specified in [USSUP1], when the id-
 fortezzaConfidentialityAlgorithm OID is present in the
 AlgorithmIdentifier algorithm field, then the AlgorithmIdentifier
 parameters field MUST be present and MUST include the SKIPJACK IV
 ASN.1 encoded using the following syntax:

 Skipjack-Parm ::= SEQUENCE { initialization-vector OCTET STRING }

 Note: [CMS] Section 2, "General Overview" describes the ASN.1
 encoding conventions for the CMS content types including the
 enveloped-data and encrypted-data content types in which the id-
 fortezzaConfidentialityAlgorithm OID and parameters will be present.

References

 [CMS] Housley, R., "Cryptographic Message Syntax", RFC 2630,
 June 1999.

 [KEA] Housley, R. and W. Polk, "Representation of Key Exchange
 Algorithm (KEA) Keys in Internet X.509 Public Key
 Infrastructure Certificates", RFC 2528, March 1999.

 [INFO] Registry of INFOSEC Technical Objects, 22 July 1999.

 [MSG] Ramsdell, B., "S/MIME Version 3 Message Specification",
 RFC 2633, June 1999.

 [MUSTSHOULD] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [SJ-KEA] SKIPJACK and KEA Algorithm Specifications, Version 2.0,
 http://csrc.nist.gov/encryption/skipjack-kea.htm.

Pawling Informational [Page 11]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

 [USSUP1] Allied Communication Publication 120 (ACP120) Common
 Security Protocol (CSP) United States (US) Supplement
 No. 1, June 1998;
 http://www.armadillo.huntsville.al.us/Fortezza_docs/missi2.html#specs.

Acknowledgments

 The following people have made significant contributions to this
 memo: David Dalkowski, Phillip Griffin, Russ Housley, Pierce
 Leonberger, Rich Nicholas, Bob Relyea and Jim Schaad.

Author’s Address

 John Pawling
 Wang Government Services, Inc. (WGSI),
 A Getronics Company
 141 National Business Pkwy, Suite 210
 Annapolis Junction, MD 20701

 Phone: (301) 939-2739
 (410) 880-6095
 EMail: john.pawling@wang.com

Pawling Informational [Page 12]

RFC 2876 KEA and SKIPJACK Algorithms in CMS July 2000

Full Copyright Statement

 Copyright (C) The Internet Society (2000). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Pawling Informational [Page 13]

