
Network Working Group R. Braden
Request for Comments: 1644 ISI
Category: Experimental July 1994

 T/TCP -- TCP Extensions for Transactions
 Functional Specification

Status of this Memo

 This memo describes an Experimental Protocol for the Internet
 community, and requests discussion and suggestions for improvements.
 It does not specify an Internet Standard. Distribution is unlimited.

Abstract

 This memo specifies T/TCP, an experimental TCP extension for
 efficient transaction-oriented (request/response) service. This
 backwards-compatible extension could fill the gap between the current
 connection-oriented TCP and the datagram-based UDP.

 This work was supported in part by the National Science Foundation
 under Grant Number NCR-8922231.

Table of Contents

 1. INTRODUCTION .. 2
 2. OVERVIEW ... 3
 2.1 Bypassing the Three-Way Handshake 4
 2.2 Transaction Sequences 6
 2.3 Protocol Correctness 8
 2.4 Truncating TIME-WAIT State 12
 2.5 Transition to Standard TCP Operation 14
 3. FUNCTIONAL SPECIFICATION 17
 3.1 Data Structures .. 17
 3.2 New TCP Options .. 17
 3.3 Connection States .. 19
 3.4 T/TCP Processing Rules 25
 3.5 User Interface ... 28
 4. IMPLEMENTATION ISSUES .. 30
 4.1 RFC-1323 Extensions 30
 4.2 Minimal Packet Sequence 31
 4.3 RTT Measurement .. 31
 4.4 Cache Implementation 32
 4.5 CPU Performance .. 32
 4.6 Pre-SYN Queue .. 33
 6. ACKNOWLEDGMENTS .. 34
 7. REFERENCES ... 34
 APPENDIX A. ALGORITHM SUMMARY 35

Braden [Page 1]

RFC 1644 Transaction/TCP July 1994

 Security Considerations .. 38
 Author’s Address ... 38

1. INTRODUCTION

 TCP was designed to around the virtual circuit model, to support
 streaming of data. Another common mode of communication is a
 client-server interaction, a request message followed by a response
 message. The request/response paradigm is used by application-layer
 protocols that implement transaction processing or remote procedure
 calls, as well as by a number of network control and management
 protocols (e.g., DNS and SNMP). Currently, many Internet user
 programs that need request/response communication use UDP, and when
 they require transport protocol functions such as reliable delivery
 they must effectively build their own private transport protocol at
 the application layer.

 Request/response, or "transaction-oriented", communication has the
 following features:

 (a) The fundamental interaction is a request followed by a response.

 (b) An explicit open or close phase may impose excessive overhead.

 (c) At-most-once semantics is required; that is, a transaction must
 not be "replayed" as the result of a duplicate request packet.

 (d) The minimum transaction latency for a client should be RTT +
 SPT, where RTT is the round-trip time and SPT is the server
 processing time.

 (e) In favorable circumstances, a reliable request/response
 handshake should be achievable with exactly one packet in each
 direction.

 This memo concerns T/TCP, an backwards-compatible extension of TCP to
 provide efficient transaction-oriented service in addition to
 virtual-circuit service. T/TCP provides all the features listed
 above, except for (e); the minimum exchange for T/TCP is three
 segments.

 In this memo, we use the term "transaction" for an elementary
 request/response packet sequence. This is not intended to imply any
 of the semantics often associated with application-layer transaction
 processing, like 3-phase commits. It is expected that T/TCP can be
 used as the transport layer underlying such an application-layer
 service, but the semantics of T/TCP is limited to transport-layer
 services such as reliable, ordered delivery and at-most-once

Braden [Page 2]

RFC 1644 Transaction/TCP July 1994

 operation.

 An earlier memo [RFC-1379] presented the concepts involved in T/TCP.
 However, the real-world usefulness of these ideas depends upon
 practical issues like implementation complexity and performance. To
 help explore these issues, this memo presents a functional
 specification for a particular embodiment of the ideas presented in
 RFC-1379. However, the specific algorithms in this memo represent a
 later evolution than RFC-1379. In particular, Appendix A in RFC-1379
 explained the difficulties in truncating TIME-WAIT state. However,
 experience with an implementation of the RFC-1379 algorithms in a
 workstation later showed that accumulation of TCB’s in TIME-WAIT
 state is an intolerable problem; this necessity led to a simple
 solution for truncating TIME-WAIT state, described in this memo.

 Section 2 introduces the T/TCP extensions, and section 3 contains the
 complete specification of T/TCP. Section 4 discusses some
 implementation issues, and Appendix A contains an algorithmic
 summary. This document assumes familiarity with the standard TCP
 specification [STD-007].

2. OVERVIEW

 The TCP protocol is highly symmetric between the two ends of a
 connection. This symmetry is not lost in T/TCP; for example, T/TCP
 supports TCP’s symmetric simultaneous open from both sides (Section
 2.3 below). However, transaction sequences use T/TCP in a highly
 unsymmetrical manner. It is convenient to use the terms "client
 host" and "server host" for the host that initiates a connection and
 the host that responds, respectively.

 The goal of T/TCP is to allow each transaction, i.e., each
 request/response sequence, to be efficiently performed as a single
 incarnation of a TCP connection. Standard TCP imposes two
 performance problems for transaction-oriented communication. First,
 a TCP connection is opened with a "3-way handshake", which must
 complete successfully before data can be transferred. The 3-way
 handshake adds an extra RTT (round trip time) to the latency of a
 transaction.

 The second performance problem is that closing a TCP connection
 leaves one or both ends in TIME-WAIT state for a time 2*MSL, where
 MSL is the maximum segment lifetime (defined to be 120 seconds).
 TIME-WAIT state severely limits the rate of successive transactions
 between the same (host,port) pair, since a new incarnation of the
 connection cannot be opened until the TIME-WAIT delay expires. RFC-
 1379 explained why the alternative approach, using a different user
 port for each transaction between a pair of hosts, also limits the

Braden [Page 3]

RFC 1644 Transaction/TCP July 1994

 transaction rate: (1) the 16-bit port space limits the rate to
 2**16/240 transactions per second, and (2) more practically, an
 excessive amount of kernel space would be occupied by TCP state
 blocks in TIME-WAIT state [RFC-1379].

 T/TCP solves these two performance problems for transactions, by (1)
 bypassing the 3-way handshake (3WHS) and (2) shortening the delay in
 TIME-WAIT state.

 2.1 Bypassing the Three-Way Handshake

 T/TCP introduces a 32-bit incarnation number, called a "connection
 count" (CC), that is carried in a TCP option in each segment. A
 distinct CC value is assigned to each direction of an open
 connection. A T/TCP implementation assigns monotonically
 increasing CC values to successive connections that it opens
 actively or passively.

 T/TCP uses the monotonic property of CC values in initial <SYN>
 segments to bypass the 3WHS, using a mechanism that we call TCP
 Accelerated Open (TAO). Under the TAO mechanism, a host caches a
 small amount of state per remote host. Specifically, a T/TCP host
 that is acting as a server keeps a cache containing the last valid
 CC value that it has received from each different client host. If
 an initial <SYN> segment (i.e., a segment containing a SYN bit but
 no ACK bit) from a particular client host carries a CC value
 larger than the corresponding cached value, the monotonic property
 of CC’s ensures that the <SYN> segment must be new and can
 therefore be accepted immediately. Otherwise, the server host
 does not know whether the <SYN> segment is an old duplicate or was
 simply delivered out of order; it therefore executes a normal 3WHS
 to validate the <SYN>. Thus, the TAO mechanism provides an
 optimization, with the normal TCP mechanism as a fallback.

 The CC value carried in non-<SYN> segments is used to protect
 against old duplicate segments from earlier incarnations of the
 same connection (we call such segments ’antique duplicates’ for
 short). In the case of short connections (e.g., transactions),
 these CC values allow TIME-WAIT state delay to be safely discuss
 in Section 2.3.

 T/TCP defines three new TCP options, each of which carries one
 32-bit CC value. These options are named CC, CC.NEW, and CC.ECHO.
 The CC option is normally used; CC.NEW and CC.ECHO have special
 functions, as follows.

Braden [Page 4]

RFC 1644 Transaction/TCP July 1994

 (a) CC.NEW

 Correctness of the TAO mechanism requires that clients
 generate monotonically increasing CC values for successive
 connection initiations. These values can be generated using
 a simple global counter. There are certain circumstances
 (discussed below in Section 2.2) when the client knows that
 monotonicity may be violated; in this case, it sends a CC.NEW
 rather than a CC option in the initial <SYN> segment.
 Receiving a CC.NEW causes the server to invalidate its cache
 entry and do a 3WHS.

 (b) CC.ECHO

 When a server host sends a <SYN,ACK> segment, it echoes the
 connection count from the initial <SYN> in a CC.ECHO option,
 which is used by the client host to validate the <SYN,ACK>
 segment.

 Figure 1 illustrates the TAO mechanism bypassing a 3WHS. The
 cached CC values, denoted by cache.CC[host], are shown on each
 side. The server host compares the new CC value x in segment #1
 against x0, its cached value for client host A; this comparison is
 called the "TAO test". Since x > x0, the <SYN> must be new and
 can be accepted immediately; the data in the segment can therefore
 be delivered to the user process B, and the cached value is
 updated. If the TAO test failed (x <= x0), the server host would
 do a normal three-way handshake to validate the <SYN> segment, but
 the cache would not be updated.

Braden [Page 5]

RFC 1644 Transaction/TCP July 1994

 TCP A (Client) TCP B (Server)
 _______________ ______________

 cache.CC[A]
 V

 [x0]

 #1 --> <SYN, data1, CC=x> --> (TAO test OK (x > x0) =>
 data1->user_B and
 cache.CC[A]= x;)

 [x]
 #2 <-- <SYN, ACK(data1), data2, CC=y, CC.ECHO=x> <--
 (data2->user_A;)

 Figure 1. TAO: Three-Way Handshake is Bypassed

 The CC value x is echoed in a CC.ECHO option in the <SYN,ACK>
 segment (#2); the client side uses this option to validate the
 segment. Since segment #2 is valid, its data2 is delivered to the
 client user process. Segment #2 also carries B’s CC value; this
 is used by A to validate non-SYN segments from B, as explained in
 Section 2.4.

 Implementing the T/TCP extensions expands the connection control
 block (TCB) to include the two CC values for the connection; call
 these variables TCB.CCsend and TCB.CCrecv (or CCsend, CCrecv for
 short). For example, the sequence shown in Figure 1 sets
 TCB.CCsend = x and TCB.CCrecv = y at host A, and vice versa at
 host B. Any segment that is received with a CC option containing
 a value SEG.CC different from TCB.CCsend will be rejected as an
 antique duplicate.

 2.2 Transaction Sequences

 T/TCP applies the TAO mechanism described in the previous section
 to perform a transaction sequence. Figure 2 shows a minimal
 transaction, when the request and response data can each fit into
 a single segment. This requires three segments and completes in
 one round-trip time (RTT). If the TAO test had failed on segment
 #1, B would have queued data1 and the FIN for later processing,
 and then it would have returned a <SYN,ACK> segment to A, to
 perform a normal 3WHS.

Braden [Page 6]

RFC 1644 Transaction/TCP July 1994

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 #1 SYN-SENT* --> <SYN,data1,FIN,CC=x> --> CLOSE-WAIT*
 (TAO test OK)
 (data1->user_B)

 <-- LAST-ACK*
 #2 TIME-WAIT <-- <SYN,ACK(FIN),data2,FIN,CC=y,CC.ECHO=x>
 (data2->user_A)

 #3 TIME-WAIT --> <ACK(FIN),CC=x> --> CLOSED

 (timeout)
 CLOSED

 Figure 2: Minimal T/TCP Transaction Sequence

 T/TCP extensions require additional connection states, e.g., the
 SYN-SENT*, CLOSE-WAIT*, and LAST-ACK* states shown in Figure 2.
 Section 3.3 describes these new connection states.

 To obtain the minimal 3-segment sequence shown in Figure 2, the
 server host must delay acknowledging segment #1 so the response
 may be piggy-backed on segment #2. If the application takes
 longer than this delay to compute the response, the normal TCP
 retransmission mechanism in TCP B will send an acknowledgment to
 forestall a retransmission from TCP A. Figure 3 shows an example
 of a slow server application. Although the sequence in Figure 3
 does contain a 3-way handshake, the TAO mechanism has allowed the
 request data to be accepted immediately, so that the client still
 sees the minimum latency.

Braden [Page 7]

RFC 1644 Transaction/TCP July 1994

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 #1 SYN-SENT* --> <SYN,data1,FIN,CC=x> --> CLOSE-WAIT*
 (TAO test OK =>
 data1->user_B)

 (timeout)
 #2 FIN-WAIT-1 <-- <SYN,ACK(FIN),CC=y,CC.ECHO=x> <-- CLOSE-WAIT*

 #3 FIN-WAIT-1 --> <ACK(SYN),FIN,CC=x> --> CLOSE-WAIT

 #4 TIME-WAIT <-- <ACK(FIN),data2,FIN,CC=y> <-- LAST-ACK
 (data2->user_A)

 #5 TIME_WAIT --> <ACK(FIN),CC=x> --> CLOSED

 (timeout)
 CLOSED

 Figure 3: Acknowledgment Timeout in Server

 2.3 Protocol Correctness

 This section fills in more details of the TAO mechanism and
 provides an informal sketch of why the T/TCP protocol works.

 CC values are 32-bit integers. The TAO test requires the same
 kind of modular arithmetic that is used to compare two TCP
 sequence numbers. We assume that the boundary between y < z and z
 < y for two CC values y and z occurs when they differ by 2**31,
 i.e., by half the total CC space.

 The essential requirement for correctness of T/TCP is this:

 CC values must advance at a rate slower than 2**31 [R1]
 counts per 2*MSL

 where MSL denotes the maximum segment lifetime in the Internet.
 The requirement [R1] is easily met with a 32-bit CC. For example,
 it will allow 10**6 transactions per second with the very liberal
 MSL of 1000 seconds [RFC-1379]. This is well in excess of the

Braden [Page 8]

RFC 1644 Transaction/TCP July 1994

 transaction rates achievable with current operating systems and
 network latency.

 Assume for the present that successive connections from client A
 to server B contain only monotonically increasing CC values. That
 is, if x(i) and x(i+1) are CC values carried in two successive
 initial <SYN> segments from the same host, then x(i+1) > x(i).
 Assuming the requirement [R1], the CC space cannot wrap within the
 range of segments that can be outstanding at one time. Therefore,
 those successive <SYN> segments from a given host that have not
 exceeded their MSL must contain an ordered set of CC values:

 x(1) < x(2) < x(3) ... < x(n),

 where the modular comparisons have been replaced by simple
 arithmetic comparisons. Here x(n) is the most recent acceptable
 <SYN>, which is cached by the server. If the server host receives
 a <SYN> segment containing a CC option with value y where y >
 x(n), that <SYN> must be newer; an antique duplicate SYN with CC
 value greater than x(n) must have exceeded its MSL and vanished.
 Hence, monotonic CC values and the TAO test prevent erroneous
 replay of antique <SYN>s.

 There are two possible reasons for a client to generate non-
 monotonic CC values: (a) the client may have crashed and
 restarted, causing the generated CC values to jump backwards; or
 (b) the generated CC values may have wrapped around the finite
 space. Wraparound may occur because CC generation is global to
 all connections. Suppose that host A sends a transaction to B,
 then sends more than 2**31 transactions to other hosts, and
 finally sends another transaction to B. From B’s viewpoint, CC
 will have jumped backward relative to its cached value.

 In either of these two cases, the server may see the CC value jump
 backwards only after an interval of at least MSL since the last
 <SYN> segment from the same client host. In case (a), client host
 restart, this is because T/TCP retains TCP’s explicit "Quiet Time"
 of an MSL interval [STD-007]. In case (b). wrap around, [R1]
 ensures that a time of at least MSL must have passed before the CC
 space wraps around. Hence, there is no possibility that a TAO
 test will succeed erroneously due to either cause of non-
 monotonicity; i.e., there is no chance of replays due to TAO.

 However, although CC values jumping backwards will not cause an
 error, it may cause a performance degradation due to unnecessary
 3WHS’s. This results from the generated CC values jumping
 backwards through approximately half their range, so that all
 succeeding TAO tests fail until the generated CC values catch up

Braden [Page 9]

RFC 1644 Transaction/TCP July 1994

 to the cached value. To avoid this degradation, a client host
 sends a CC.NEW option instead of a CC option in the case of either
 system restart or CC wraparound. Receiving CC.NEW forces a 3WHS,
 but when this 3WHS completes successfully the server cache is
 updated to the new CC value. To detect CC wraparound, the client
 must cache the last CC value it sent to each server. It therefore
 maintains cache.CCsent[B] for each server B. If this cached value
 is undefined or if it is larger than the next CC value generated
 at the client, then the client sends a CC.NEW instead of a CC
 option in the next SYN segment.

 This is illustrated in Figure 4, which shows the scenario for the
 first transaction from A to B after the client host A has crashed
 and recovered. A similar sequence occurs if x is not greater than
 cache.CCsent[B], i.e., if there is a wraparound of the generated
 CC values. Because segment #1 contains a CC.NEW option, the
 server host invalidates the cache entry and does a 3WHS; however,
 it still sets B’s TCB.CCrecv for this connection to x. TCP B uses
 this CCrecv value to validate the <ACK> segment (#3) that
 completes the 3WHS. Receipt of this segment updates cache.CC[A],
 since the cache entry was previously undefined. (If a 3WHS always
 updated the cache, then out-of-order SYN segments could cause the
 cached value to jump backwards, possibly allowing replays).
 Finally, the CC.ECHO option in the <SYN,ACK> segment #2 defines
 A’s cache.CCsent entry.

 This algorithm delays updating cache.CCsent[] until the <SYN> has
 been ACK’d. This allows the undefined cache.CCsent value to used
 as a a "first-time switch" to reliable resynchronization of the
 cached value at the server after a crash or wraparound.

 When we use the term "cache", we imply that the value can be
 discarded at any time without introducing erroneous behavior
 although it may degrade performance.

 (a) If a server host receives an initial <SYN> from client A but
 has no cached value cache.CC[A], the server simply forces a
 3WHS to validate the <SYN> segment.

 (b) If a client host has no cached value cache.CCsent[B] when it
 needs to send an initial <SYN> segment, the client simply
 sends a CC.NEW option in the segment. This forces a 3WHS at
 the server.

Braden [Page 10]

RFC 1644 Transaction/TCP July 1994

 TCP A (Client) TCP B (Server)
 _______________ ______________

 cache.CCsent[B] cache.CC[A]
 V V

 (Crash and restart)
 [??] [x0]

 #1 --> <SYN, data1,CC.NEW=x> --> (invalidate cache;
 queue data1;
 3-way handshake)

 [??] [??]
 #2 <-- <SYN, ACK(data1),CC=y,CC.ECHO=x> <--
 (cache.CCsent[B]= x;)

 [x] [??]

 #3 --> <ACK(SYN),CC=x> --> data1->user_B;
 cache.CC[A]= x;

 [x] [x]

 Figure 4. Client Host Restarting

 So far, we have considered only correctness of the TAO mechanism
 for bypassing the 3WHS. We must also protect a connection against
 antique duplicate non-SYN segments. In standard TCP, such
 protection is one of the functions of the TIME-WAIT state delay.
 (The other function is the TCP full-duplex close semantics, which
 we need to preserve; that is discussed below in Section 2.5). In
 order to achieve a high rate of transaction processing, it must be
 possible to truncate this TIME-WAIT state delay without exposure
 to antique duplicate segments [RFC-1379].

 For short connections (e.g., transactions), the CC values assigned
 to each direction of the connection can be used to protect against
 antique duplicate non-SYN segments. Here we define "short" as a
 duration less than MSL. Suppose that there is a connection that
 uses the CC values TCB.CCsend = x and TCB.CCrecv = y. By the
 requirement [R1], neither x nor y can be reused for a new
 connection from the same remote host for a time at least 2*MSL.
 If the connection has been in existence for a time less than MSL,
 then its CC values will not be reused for a period that exceeds
 MSL, and therefore all antique duplicates with that CC value must
 vanish before it is reused. Thus, for "short" connections we can

Braden [Page 11]

RFC 1644 Transaction/TCP July 1994

 guard against antique non-SYN segments by simply checking the CC
 value in the segment againsts TCB.CCrecv. Note that this check
 does not use the monotonic property of the CC values, only that
 they not cycle in less than 2*MSL. Again, the quiet time at
 system restart protects against errors due to crash with loss of
 state.

 If the connection duration exceeds MSL, safety from old duplicates
 still requires a TIME-WAIT delay of 2*MSL. Thus, truncation of
 TIME-WAIT state is only possible for short connections. (This
 problem has also been noticed by Shankar and Lee [ShankarLee93]).
 This difference in behavior for long and for short connections
 does create a slightly complex service model for applications
 using T/TCP. An application has two different strategies for
 multiple connections. For "short" connections, it should use a
 fixed port pair and use the T/TCP mechanism to get rapid and
 efficient transaction processing. For connections whose durations
 are of the order of MSL or longer, it should use a different user
 port for each successive connection, as is the current practice
 with unmodified TCP. The latter strategy will cause excessive
 overhead (due to TCB’s in TIME-WAIT state) if it is applied to
 high-frequency short connections. If an application makes the
 wrong choice, its attempt to open a new connection may fail with a
 "busy" error. If connection durations may range between long and
 short, an application may have to be able to switch strategies
 when one fails.

 2.4 Truncating TIME-WAIT State

 Truncation of TIME-WAIT state is necessary to achieve high
 transaction rates. As Figure 2 illustrates, a standard
 transaction leaves the client end of the connection in TIME-WAIT
 state. This section explains the protocol implications of
 truncating TIME-WAIT state, when it is allowed (i.e., when the
 connection has been in existence for less than MSL). In this
 case, the client host should be able to interrupt TIME-WAIT state
 to initiate a new incarnation of the same connection (i.e., using
 the same host and ports). This will send an initial <SYN>
 segment.

 It is possible for the new <SYN> to arrive at the server before
 the retransmission state from the previous incarnation is gone, as
 shown in Figure 5. Here the final <ACK> (segment #3) from the
 previous incarnation is lost, leaving retransmission state at B.
 However, the client received segment #2 and thinks the transaction
 completed successfully, so it can initiate a new transaction by
 sending <SYN> segment #4. When this <SYN> arrives at the server
 host, it must implicitly acknowledge segment #2, signalling

Braden [Page 12]

RFC 1644 Transaction/TCP July 1994

 success to the server application, deleting the old TCB, and
 creating a new TCB, as shown in Figure 5. Still assuming that the
 new <SYN> is known to be valid, the server host marks the new
 connection half-synchronized and delivers data3 to the server
 application. (The details of how this is accomplished are
 presented in Section 3.3.)

 The earlier discussion of the TAO mechanism assumed that the
 previous incarnation was closed before a new <SYN> arrived at the
 server. However, TAO cannot be used to validate the <SYN> if
 there is still state from the previous incarnation, as shown in
 Figure 5; in this case, it would be exceedingly awkward to perform
 a 3WHS if the TAO test should fail. Fortunately, a modified
 version of the TAO test can still be performed, using the state in
 the earlier TCB rather than the cached state.

 (A) If the <SYN> segment contains a CC or CC.NEW option, the
 value SEG.CC from this option is compared with TCB.CCrecv,
 the CC value in the still-existing state block of the
 previous incarnation. If SEG.CC > TCB.CCrecv, the new <SYN>
 segment must be valid.

 (B) Otherwise, the <SYN> is an old duplicate and is simply
 discarded.

 Truncating TIME-WAIT state may be looked upon as composing an
 extended state machine that joins the state machines of the two
 incarnations, old and new. It may be described by introducing new
 intermediate states (which we call I-states), with transitions
 that join the two diagrams and share some state from each. I-
 states are detailed in Section 3.3.

 Notice also segment #2’ in Figure 5. TCP’s mechanism to recover
 from half-open connections (see Figure 10 of [STD-007]) cause TCP
 A to send a RST when 2’ arrives, which would incorrectly make B
 think that the previous transaction did not complete successfully.
 The half-open recovery mechanism must be defeated in this case, by
 A ignoring segment #2’.

Braden [Page 13]

RFC 1644 Transaction/TCP July 1994

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 #1 --> <...,FIN,CC=x> --> LAST-ACK*

 #2 <-- <...ACK(FIN),data2,FIN,CC=y,CC.ECHO=x> <--- LAST-ACK*
 TIME-WAIT
 (data2->user_A)

 #3 TIME-WAIT --> <ACK(FIN),CC=x> --> X (DROP)

 (New Active Open) (New Passive Open)

 #4 SYN-SENT* --> <SYN, data3,CC=z> ...

 LISTEN-LA
 #2’ (discard) <-- <...ACK(FIN),data2,FIN,CC=y> <--- (retransmit)

 #4 SYN-SENT* ... <SYN,data3,CC=z> --> ESTABLISHED*
 SYN OK (see text) =>
 {Ack seg #2;
 Delete old TCB;
 Create new TCB;
 data3 -> user_B;
 cache.CC[A]= z;}

 Figure 5: Truncating TIME-WAIT State: SYN as Implicit ACK

 2.5 Transition to Standard TCP Operation

 T/TCP includes all normal TCP semantics, and it will continue to
 operate exactly like TCP when the particular assumptions for
 transactions do not hold. There is no limit on the size of an
 individual transaction, and behavior of T/TCP should merge
 seamlessly from pure transaction operation as shown in Figure 2,
 to pure streaming mode for sending large files. All the sequences
 shown in [STD-007] are still valid, and the inherent symmetry of
 TCP is preserved.

 Figure 6 shows a possible sequence when the request and response
 messages each require two segments. Segment #2 is a non-SYN
 segment that contains a TCP option. To avoid compatibility
 problems with existing TCP implementations, the client side should

Braden [Page 14]

RFC 1644 Transaction/TCP July 1994

 send segment #2 only if cache.CCsent[B] is defined, i.e., only if
 host A knows that host B plays the new game.

 TCP A (Client) TCP B (Server)
 _______________ ______________

 CLOSED LISTEN

 #1 SYN-SENT* --> <SYN,data1,CC=x> --> ESTABLISHED*
 (TAO test OK =>
 data1-> user)

 #2 SYN-SENT* --> <data2,FIN,CC=x> --> CLOSE-WAIT*
 (data2-> user)

 CLOSE-WAIT*
 #3 FIN-WAIT-2 <-- <SYN,ACK(FIN),data3,CC=y,CC.ECHO=x> <--
 (data3->user)

 #4 TIME_WAIT <-- <ACK(FIN),data4,FIN,CC=y> <-- LAST-ACK*
 (data4->user)

 #5 TIME-WAIT --> <ACK(FIN),CC=x> --> CLOSED

 Figure 6. Multi-Packet Request/Response Sequence

 Figure 7 shows a more complex example, one possible sequence with
 TAO combined with simultaneous open and close. This may be
 compared with Figure 8 of [STD-007].

Braden [Page 15]

RFC 1644 Transaction/TCP July 1994

 TCP A TCP B
 _______________ ______________

 CLOSED CLOSED

 #1 SYN-SENT* --> <SYN,data1,FIN,CC=x> ...

 #2 CLOSING* <-- <SYN,data2,FIN,CC=y> <-- SYN-SENT*
 (TAO test OK =>
 data2->user_A

 #3 CLOSING* --> <FIN,ACK(FIN),CC=x,CC.ECHO=y> ...

 #1’ ... <SYN,data1,FIN,CC=x> --> CLOSING*
 (TAO test OK =>
 data1->user_B)

 #4 TIME-WAIT <-- <FIN,ACK(FIN),CC=y,CC.ECHO=x> <-- CLOSING*

 #5 TIME-WAIT --> <ACK(FIN),CC=x> ...

 #3’ ... <FIN,ACK(FIN),CC=x,CC.ECHO=y> --> TIME-WAIT

 #6 TIME-WAIT <-- <ACK(FIN),CC=y> <--- TIME-WAIT

 #5’ TIME-WAIT ... <ACK(FIN),CC=x> --> TIME-WAIT

 (timeout) (timeout)
 CLOSED CLOSED

 Figure 7: Simultaneous Open and Close

Braden [Page 16]

RFC 1644 Transaction/TCP July 1994

3. FUNCTIONAL SPECIFICATION

 3.1 Data Structures

 A connection count is an unsigned 32-bit integer, with the value
 zero excluded. Zero is used to denote an undefined value.

 A host maintains a global connection count variable CCgen, and
 each connection control block (TCB) contains two new connection
 count variables, TCB.CCsend and TCB.CCrecv. Whenever a TCB is
 created for the active or passive end of a new connection, CCgen
 is incremented by 1 and placed in TCB.CCsend of the TCB; however,
 if the previous CCgen value was 0xffffffff (-1), then the next
 value should be 1. TCB.CCrecv is initialized to zero (undefined).

 T/TCP adds a per-host cache to TCP. An entry in this cache for
 foreign host fh includes two CC values, cache.CC[fh] and
 cache.CCsent[fh]. It may include other values, as discussed in
 Sections 4.3 and 4.4. According to [STD-007], a TCP is not
 permitted to send a segment larger than the default size 536,
 unless it has received a larger value in an MSS (Maximum Segment
 Size) option. This could constrain the client to use the default
 MSS of 536 bytes for every request. To avoid this constraint, a
 T/TCP may cache the MSS option values received from remote hosts,
 and we allow a TCP to use a cached MSS option value for the
 initial SYN segment.

 When the client sends an initial <SYN> segment containing data, it
 does not have a send window for the server host. This is not a
 great difficulty; we simply define a default initial window; our
 current suggestion is 4K. Such a non-zero default should be be
 conditioned upon the existence of a cached connection count for
 the foreign host, so that data may be included on an initial SYN
 segment only if cache.CC[foreign host] is non-zero.

 In TCP, the window is dynamically adjusted to provide congestion
 control/avoidance [Jacobson88]. It is possible that a particular
 path might not be able to absorb an initial burst of 4096 bytes
 without congestive losses. If this turns out to be a problem, it
 should be possible to cache the congestion threshold for the path
 and use this value to determine the maximum size of the initial
 packet burst created by a request.

 3.2 New TCP Options

 Three new TCP options are defined: CC, CC.NEW, and CC.ECHO. Each
 carries a connection count SEG.CC. The complete rules for sending
 and processing these options are given in Section 3.4 below.

Braden [Page 17]

RFC 1644 Transaction/TCP July 1994

 CC Option

 Kind: 11

 Length: 6

 +--------+--------+--------+--------+--------+--------+
 |00001011|00000110| Connection Count: SEG.CC |
 +--------+--------+--------+--------+--------+--------+
 Kind=11 Length=6

 This option may be sent in an initial SYN segment, and it may
 be sent in other segments if a CC or CC.NEW option has been
 received for this incarnation of the connection. Its SEG.CC
 value is the TCB.CCsend value from the sender’s TCB.

 CC.NEW Option

 Kind: 12

 Length: 6

 +--------+--------+--------+--------+--------+--------+
 |00001100|00000110| Connection Count: SEG.CC |
 +--------+--------+--------+--------+--------+--------+
 Kind=12 Length=6

 This option may be sent instead of a CC option in an initial
 <SYN> segment (i.e., SYN but not ACK bit), to indicate that the
 SEG.CC value may not be larger than the previous value. Its
 SEG.CC value is the TCB.CCsend value from the sender’s TCB.

 CC.ECHO Option

 Kind: 13

 Length: 6

 +--------+--------+--------+--------+--------+--------+
 |00001101|00000110| Connection Count: SEG.CC |
 +--------+--------+--------+--------+--------+--------+
 Kind=13 Length=6

 This option must be sent (in addition to a CC option) in a
 segment containing both a SYN and an ACK bit, if the initial
 SYN segment contained a CC or CC.NEW option. Its SEG.CC value
 is the SEG.CC value from the initial SYN.

Braden [Page 18]

RFC 1644 Transaction/TCP July 1994

 A CC.ECHO option should be sent only in a <SYN,ACK> segment and
 should be ignored if it is received in any other segment.

 3.3 Connection States

 T/TCP requires new connection states and state transitions.
 Figure 8 shows the resulting finite state machine; see [RFC-1379]
 for a detailed development. If all state names ending in stars
 are removed from Figure 8, the state diagram reduces to the
 standard TCP state machine (see Figure 6 of [STD-007]), with two
 exceptions:

 * STD-007 shows a direct transition from SYN-RECEIVED to FIN-
 WAIT-1 state when the user issues a CLOSE call. This
 transition is suspect; a more accurate description of the
 state machine would seem to require the intermediate SYN-
 RECEIVED* state shown in Figure 8.

 * In STD-007, a user CLOSE call in SYN-SENT state causes a
 direct transition to CLOSED state. The extended diagram of
 Figure 8 forces the connection to open before it closes,
 since calling CLOSE to terminate the request in SYN-SENT
 state is normal behavior for a transaction client. In the
 case that no data has been sent in SYN-SENT state, it is
 reasonable for a user CLOSE call to immediately enter CLOSED
 state and delete the TCB.

 Each of the new states in Figure 8 bears a starred name, created
 by suffixing a star onto a standard TCP state. Each "starred"
 state bears a simple relationship to the corresponding "unstarred"
 state.

 o SYN-SENT* and SYN-RECEIVED* differ from the SYN-SENT and
 SYN-RECEIVED state, respectively, in recording the fact that
 a FIN needs to be sent.

 o The other starred states indicate that the connection is
 half-synchronized (hence, a SYN bit needs to be sent).

Braden [Page 19]

RFC 1644 Transaction/TCP July 1994

 ________ g ________
 | |<------------| |
 | CLOSED |------------>| LISTEN |
 |________| h ------|________|
 | / | |
 | / i| j|
 | / | |
 a| a’/ | _V______ ________
 | / j | |ESTAB- | e’ | CLOSE- |
 | / -----------|-->| LISHED*|------------>| WAIT*|
 | / / | |________| |________|
 | / / | | | | |
 | / / | | c| d’| c|
 ____V_V_ / _______V | __V_____ | __V_____
 | SYN- | b’ | SYN- |c | |ESTAB- | e | | CLOSE- |
 | SENT |------>|RECEIVED|---|->| LISHED|----------|->| WAIT |
 |________| |________| | |________| | |________|
 | | | | | |
 | | | | __V_____ |
 | | | | | LAST- | |
 d’| d’| d’| d| | ACK* | |
 | | | | |________| |
 | | | | | |
 | | ______V_ | ________ |c’ |d
 | k | | FIN- | | e’’’ | | | |
 | -------|-->| WAIT-1*|---|------>|CLOSING*| | |
 | / | |________| | |________| | |
 | / | | | | | |
 | / | c’| | c’| | |
 ___V___ / ____V___ V_____V_ ____V___ V____V__
 | SYN- | b’’ | SYN- | c | FIN- | e’’ | | | LAST- |
 | SENT* |---->|RECEIVD*|---->| WAIT-1 |---->|CLOSING | | ACK |
 |________| |________| |________| |________| |________|
 | | |
 f| f| f’|
 ___V____ ____V___ ___V____
 | FIN- | e |TIME- | T | |
 | WAIT-2 |---->| WAIT |-->| CLOSED |
 |________| |________| |________|

 Figure 8A: Basic T/TCP State Diagram

Braden [Page 20]

RFC 1644 Transaction/TCP July 1994

 __
 | |
 | Label Event / Action |
 | _____ ________________________ |
 | |
 | a Active OPEN / create TCB, snd SYN |
 | a’ Active OPEN / snd SYN |
 | b rcv SYN [no TAO]/ snd ACK(SYN) |
 | b’ rcv SYN [no TAO]/ snd SYN,ACK(SYN) |
 | b’’ rcv SYN [no TAO]/ snd SYN,FIN,ACK(SYN) |
 | c rcv ACK(SYN) / |
 | c’ rcv ACK(SYN) / snd FIN |
 | d CLOSE / snd FIN |
 | d’ CLOSE / snd SYN,FIN |
 | e rcv FIN / snd ACK(FIN) |
 | e’ rcv FIN / snd SYN,ACK(FIN) |
 | e’’ rcv FIN / snd FIN,ACK(FIN) |
 | e’’’ rcv FIN / snd SYN,FIN,ACK(FIN) |
 | f rcv ACK(FIN) / |
 | f’ rcv ACK(FIN) / delete TCB |
 | g CLOSE / delete TCB |
 | h passive OPEN / create TCB |
 | i (= b’) rcv SYN [no TAO]/ snd SYN,ACK(SYN) |
 | j rcv SYN [TAO OK] / snd SYN,ACK(SYN) |
 | k rcv SYN [TAO OK] / snd SYN,FIN,ACK(SYN) |
 | T timeout=2MSL / delete TCB |
 | |
 | |
 | Figure 8B. Definition of State Transitions |
 |__|

 This simple correspondence leads to an alternative state model,
 which makes it easy to incorporate the new states in an existing
 implementation. Each state in the extended FSM is defined by the
 triplet:

 (old_state, SENDSYN, SENDFIN)

 where ’old_state’ is a standard TCP state and SENDFIN and SENDSYN
 are Boolean flags see Figure 9. The SENDFIN flag is turned on (on
 the client side) by a SEND(... EOF=YES) call, to indicate that a
 FIN should be sent in a state which would not otherwise send a
 FIN. The SENDSYN flag is turned on when the TAO test succeeds to
 indicate that the connection is only half synchronized; as a
 result, a SYN will be sent in a state which would not otherwise
 send a SYN.

Braden [Page 21]

RFC 1644 Transaction/TCP July 1994

 __
 | |
 | New state: Old_state: SENDSYN: SENDFIN: |
 | __________ __________ ______ ______ |
 | |
 | SYN-SENT* => SYN-SENT FALSE TRUE |
 | |
 | SYN-RECEIVED* => SYN-RECEIVED FALSE TRUE |
 | |
 | ESTABLISHED* => ESTABLISHED TRUE FALSE |
 | |
 | CLOSE-WAIT* => CLOSE-WAIT TRUE FALSE |
 | |
 | LAST-ACK* => LAST-ACK TRUE FALSE |
 | |
 | FIN-WAIT-1* => FIN-WAIT-1 TRUE FALSE |
 | |
 | CLOSING* => CLOSING TRUE FALSE |
 | |
 | |
 | Figure 9: Alternative State Definitions |
 |__|

 Here is a more complete description of these boolean variables.

 * SENDFIN

 SENDFIN is turned on by the SEND(...EOF=YES) call, and turned
 off when FIN-WAIT-1 state is entered. It may only be on in
 SYN-SENT* and SYN-RECEIVED* states.

 SENDFIN has two effects. First, it causes a FIN to be sent
 on the last segment of data from the user. Second, it causes
 the SYN-SENT[*] and SYN-RECEIVED[*] states to transition
 directly to FIN-WAIT-1, skipping ESTABLISHED state.

 * SENDSYN

 The SENDSYN flag is turned on when an initial SYN segment is
 received and passes the TAO test. SENDSYN is turned off when
 the SYN is acknowledged (specifically, when there is no RST
 or SYN bit and SEG.UNA < SND.ACK).

 SENDSYN has three effects. First, it causes the SYN bit to
 be set in segments sent with the initial sequence number
 (ISN). Second, it causes a transition directly from LISTEN
 state to ESTABLISHED*, if there is no FIN bit, or otherwise

Braden [Page 22]

RFC 1644 Transaction/TCP July 1994

 to CLOSE-WAIT*. Finally, it allows data to be received and
 processed (passed to the application) even if the segment
 does not contain an ACK bit.

 According to the state model of the basic TCP specification [STD-
 007], the server side must explicitly issued a passive OPEN call,
 creating a TCB in LISTEN state, before an initial SYN may be
 accepted. To accommodate truncation of TIME-WAIT state within
 this model, it is necessary to add the five "I-states" shown in
 Figure 10. The I-states are: LISTEN-LA, LISTEN-LA*, LISTEN-CL,
 LISTEN-CL*, and LISTEN-TW. These are ’bridge states’ between two
 successive the state diagrams of two successive incarnations.
 Here D is the duration of the previous connection, i.e., the
 elapsed time since the connection opened. The transitions labeled
 with lower-case letters are taken from Figure 8.

 Fortunately, many TCP implementations have a different user
 interface model, in which the use can issue a generic passive open
 ("listen") call; thereafter, when a matching initial SYN arrives,
 a new TCB in LISTEN state is automatically generated. With this
 user model, the I-states of Figure 10 are unnecessary.

 For example, suppose an initial SYN segment arrives for a
 connection that is in LAST-ACK state. If this segment carries a
 CC option and if SEG.CC is greater than TCB.CCrecv in the existing
 TCB, the "q" transition shown in Figure 10 can be made directly
 from the LAST-ACK state. That is, the previous TCB is processed
 as if an ACK(FIN) had arrived, causing the user to be notified of
 a successful CLOSE and the TCB to be deleted. Then processing of
 the new SYN segment is repeated, using a new TCB that is generated
 automatically. The same principle can be used to avoid
 implementing any of the I-states.

Braden [Page 23]

RFC 1644 Transaction/TCP July 1994

| P: Passive OPEN / |
| |
Q: Rcv SYN, special TAO test	d’	d			
(see text) / Delete TCB,	________ ___V____				
create TCB, snd SYN		LISTEN-	P	LAST-	
		LA*	<-----	ACK*	
Q’: (same as Q) if D < MSL		________		________	
R: Rcv ACK(FIN) / Delete TCB,	Q	c’	c’		
create TCB					
		___V____ V______V			
S’: Active OPEN if D < MSL /			LISTEN-	P	LAST-
Delete TCB, create TCB,			LA	<-----	ACK
snd SYN.			________		________

 | Q| R| f|
 ________ ________ | | | |
 e’’’ | | P |LISTEN- | | | V V
 ---->|CLOSING*|----->| CL* | | | LISTEN CLOSED
 |________| |________| | |
 | | Q| | |
 c’| c’| V V V
 | | ESTABLISHED*
 ____V___ V_______
 e’’ | | P |LISTEN- |
 ---->|CLOSING |------>| CL |
 |________| |________|
 | R| Q|
 f| V V
 | LISTEN ESTABLISHED*
 ____V___ _________
 e |TIME- | P | LISTEN- |
 ---->| WAIT |------------->| TW |
 |________| |_________|
 / | | | |
 S’/ T| T| Q’| |S’
 | _____V_ h _____V__ | V
 | | |-------->| | | SYN-SENT
 | | CLOSED |<--------| LISTEN | |
 | |________| ------|________| |
 | | / | j| |
 | a| a’/ i| V V
 | | / | ESTABLISHED*
 V V V V
 SYN-SENT ...

 Figure 10: I-States for TIME-WAIT Truncation

Braden [Page 24]

RFC 1644 Transaction/TCP July 1994

 3.4 T/TCP Processing Rules

 This section summarizes the rules for sending and processing the
 T/TCP options.

 INITIALIZATION

 I1: All cache entries cache.CC[*] and cache.CCsent[*] are
 undefined (zero) when a host system initializes, and CCgen
 is set to a non-zero value.

 I2: A new TCB is initialized with TCB.CCrecv = 0 and
 TCB.CCsend = current CCgen value; CCgen is then
 incremented. If the result is zero, CCgen is incremented
 again.

 SENDING SEGMENTS

 S1: Sending initial <SYN> Segment

 An initial <SYN> segment is sent with either a CC option
 or a CC.NEW option. If cache.CCsent[fh] is undefined or
 if TCB.CCsend < cache.CCsent[fh], then the option
 CC.NEW(TCB.CCsend) is sent and cache.CCsent[fh] is set to
 zero. Otherwise, the option CC(TCB.CCsend) is sent and
 cache.CCsent[fh] is set to CCsend.

 S2: Sending <SYN,ACK> Segment

 If the sender’s TCB.CCrecv is non-zero, then a <SYN,ACK>
 segment is sent with both a CC(TCB.CCsend) option and a
 CC.ECHO (TCB.CCrecv) option.

 S3: Sending Non-SYN Segment

 A non-SYN segment is sent with a CC(TCB.CCsend) option if
 the TCB.CCrecv value is non-zero, or if the state is SYN-
 SENT or SYN-SENT* and cache.CCsent[fh] is non-zero (this
 last is required to send CC options in the segments
 following the first of a multi-segment request message;
 see segment #2 in Figure 6).

 RECEIVING INITIAL <SYN> SEGMENT

 Suppose that a server host receives a segment containing a SYN
 bit but no ACK bit in LISTEN, SYN-SENT, or SYN-SENT* state.

Braden [Page 25]

RFC 1644 Transaction/TCP July 1994

 R1.1:If the <SYN> segment contains a CC or CC.NEW option,
 SEG.CC is stored into TCB.CCrecv of the new TCB.

 R1.2:If the segment contains a CC option and if the local cache
 entry cache.CC[fh] is defined and if
 SEG.CC > cache.CC[fh], then the TAO test is passed and the
 connection is half-synchronized in the incoming direction.
 The server host replaces the cache.CC[fh] value by SEG.CC,
 passes any data in the segment to the user, and processes
 a FIN bit if present.

 Acknowledgment of the SYN is delayed to allow piggybacking
 on a response segment.

 R1.3:If SEG.CC <= cache.CC[fh] (the TAO test has failed), or if
 cache.CC[fh] is undefined, or if there is no CC option
 (but possibly a CC.NEW option), the server host proceeds
 with normal TCP processing. If the connection was in
 LISTEN state, then the host executes a 3-way handshake
 using the standard TCP rules. In the SYN-SENT or SYN-
 SENT* state (i.e., the simultaneous open case), the TCP
 sends ACK(SYN) and enters SYN-RECEIVED state.

 R1.4:If there is no CC option (but possibly a CC.NEW option),
 then the server host sets cache.CC[fh] undefined (zero).
 Receiving an ACK for a SYN (following application of rule
 R1.3) will update cache.CC[fh], by rule R3.

 Suppose that an initial <SYN> segment containing a CC or CC.NEW
 option arrives in an I-state (i.e., a state with a name of the
 form ’LISTEN-xx’, where xx is one of TW, LA, L8, CL, or CL*):

 R1.5:If the state is LISTEN-TW, then the duration of the
 current connection is compared with MSL. If duration >
 MSL then send a RST:

 <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

 drop the packet, and return.

 R1.6:Perform a special TAO test: compare SEG.CC with
 TCB.CCrecv.

 If SEG.CC is greater, then processing is performed as if
 an ACK(FIN) had arrived: signal the application that the
 previous close completed successfully and delete the
 previous TCB. Then create a new TCB in LISTEN state and
 reprocess the SYN segment against the new TCB.

Braden [Page 26]

RFC 1644 Transaction/TCP July 1994

 Otherwise, silently discard the segment.

 RECEIVING <SYN,ACK> SEGMENT

 Suppose that a client host receives a <SYN,ACK> segment for a
 connection in SYN-SENT or SYN-SENT* state.

 R2.1:If SEG.ACK is not acceptable (see [STD-007]) and
 cache.CCsent[fh] is non-zero, then simply drop the segment
 without sending a RST. (The new SYN that the client is
 (re-)transmitting will eventually acknowledge any
 outstanding data and FIN at the server.)

 R2.2:If the segment contains a CC.ECHO option whose SEG.CC is
 different from TCB.CCsend, then the segment is
 unacceptable and is dropped.

 R2.3:If cache.CCsent[fh] is zero, then it is set to TCB.CCsend.

 R2.4:If the segment contains a CC option, its SEG.CC is stored
 into TCB.CCrecv of the TCB.

 RECEIVING <ACK> SEGMENT IN SYN-RECEIVED STATE

 R3.1:If a segment contains a CC option whose SEG.CC differs
 from TCB.CCrecv, then the segment is unacceptable and is
 dropped.

 R3.2:Otherwise, a 3-way handshake has completed successfully at
 the server side. If the segment contains a CC option and
 if cache.CC[fh] is zero, then cache.CC[fh] is replaced by
 TCB.CCrecv.

 RECEIVING OTHER SEGMENT

 R4: Any other segment received with a CC option is
 unacceptable if SEG.CC differs from TCB.CCrecv. However,
 a RST segment is exempted from this test.

 OPEN REQUEST

 To allow truncation of TIME-WAIT state, the following changes
 are made in the state diagram for OPEN requests (see Figure
 10):

 O1.1:A new passive open request is allowed in any of the
 states: LAST-ACK, LAST-ACK*, CLOSING, CLOSING*, or TIME-
 WAIT. This causes a transition to the corresponding I-

Braden [Page 27]

RFC 1644 Transaction/TCP July 1994

 state (see Figure 10), which retains the previous state,
 including the retransmission queue and timer.

 O1.2 A new active open request is allowed in TIME-WAIT or
 LISTEN-TW state, if the elapsed time since the current
 connection opened is less than MSL. The result is to
 delete the old TCB and create a new one, send a new SYN
 segment, and enter SYN-SENT or SYN-SENT* state (depending
 upon whether or not the SYN segment contains a FIN bit).

 Finally, T/TCP has a provision to improve performance for the case
 of a client that "sprays" transactions rapidly using many
 different server hosts and/or ports. If TCB.CCrecv in the TCB is
 non-zero (and still assuming that the connection duration is less
 than MSL), then the TIME-WAIT delay may be set to min(K*RTO,
 2*MSL). Here RTO is the measured retransmission timeout time and
 the constant K is currently specified to be 8.

 3.5 User Interface

 STD-007 defines a prototype user interface ("transport service")
 that implements the virtual circuit service model [STD-007,
 Section 3.8]. One addition to this interface in required for
 transaction processing: a new Boolean flag "end-of-file" (EOF),
 added to the SEND call. A generic SEND call becomes:

 Send

 Format: SEND (local connection name, buffer address,
 byte count, PUSH flag, URGENT flag, EOF flag [,timeout])

 The following text would be added to the description of SEND in
 [STD-007]:

 If the EOF (End-Of-File) flag is set, any remaining queued
 data is pushed and the connection is closed. Just as with the
 CLOSE call, all data being sent is delivered reliably before
 the close takes effect, and data may continue to be received
 on the connection after completion of the SEND call.

 Figure 8A shows a skeleton sequence of user calls by which a
 client could initiate a transaction. The SEND call initiates a
 transaction request to the foreign socket (host and port)
 specified in the passive OPEN call. The predicate "recv_EOF"
 tests whether or not a FIN has been received on the connection;
 this might be implemented using the STATUS command of [STD-007],
 or it might be implemented by some operating-system-dependent
 mechanism. When recv_EOF returns TRUE, the connection has been

Braden [Page 28]

RFC 1644 Transaction/TCP July 1994

 completely closed and the client end of the connection is in
 TIME-WAIT state.

 __
 | |
 | |
 | OPEN(local_port, foreign_socket, PASSIVE) -> conn_name; |
 | |
 | SEND(conn_name, request_buffer, length, |
 | PUSH=YES, URG=NO, EOF=YES); |
 | |
 | while (not recv_EOF(conn_name)) { |
 | |
 | RECEIVE(conn_name, reply_buffer, length) -> count; |
 | |
 | <Process reply_buffer.> |
 | } |
 | |
 | |
 | Figure 8A: Client Side User Interface |
 |__|

 If a client is going to send a rapid series of such requests to
 the same foreign_socket, it should use the same local_port for
 all. This will allow truncation of TIME-WAIT state. Otherwise,
 it could leave local_port wild, allowing TCP to choose successive
 local ports for each call, realizing that each transaction may
 leave behind a significant control block overhead in the kernel.

 Figure 8B shows a basic sequence of server calls. The server
 application waits for a request to arrive and then reads and
 processes it until a FIN arrives (recv_EOF returns TRUE). At this
 time, the connection is half-closed. The SEND call used to return
 the reply completes the close in the other direction. It should
 be noted that the use of SEND(... EOF=YES) in Figure 4B instead of
 a SEND, CLOSE sequence is only an optimization; it allows
 piggybacking the FIN in order to minimize the number of segments.
 It should have little effect on transaction latency.

Braden [Page 29]

RFC 1644 Transaction/TCP July 1994

 __
 | |
 | |
 | OPEN(local_port, ANY_SOCKET, PASSIVE) -> conn_name; |
 | |
 | <Wait for connection to open.> |
 | |
 | STATUS(conn_name) -> foreign_socket |
 | |
 | while (not recv_EOF(conn_name)) { |
 | |
 | RECEIVE(conn_name, request_buffer, length) -> count; |
 | |
 | <Process request_buffer.> |
 | } |
 | |
 | <Compute reply and store into reply_buffer.> |
 | |
 | SEND(conn_name, reply_buffer, length, |
 | PUSH=YES, URG=NO, EOF=YES); |
 | |
 | |
 | Figure 8B: Server Side User Interface |
 |__|

4. IMPLEMENTATION ISSUES

 4.1 RFC-1323 Extensions

 A recently-proposed set of TCP enhancements [RFC-1323] defines a
 Timestamps option, which carries two 32-bit timestamp values.
 This option is used to accurately measure round-trip time (RTT).
 The same option is also used in a procedure known as "PAWS"
 (Protect Against Wrapped Sequence) to prevent erroneous data
 delivery due to a combination of old duplicate segments and
 sequence number reuse at very high bandwidths. The approach to
 transactions specified in this memo is independent of the RFC-1323
 enhancements, but implementation of RFC-1323 is desirable for all
 TCP’s.

 The RFC-1323 extensions share several common implementation issues
 with the T/TCP extensions. Both require that TCP headers carry
 options. Accommodating options in TCP headers requires changes in
 the way that the maximum segment size is determined, to prevent
 inadvertent IP fragmentation. Both require some additional state
 variable in the TCB, which may or may not cause implementation
 difficulties.

Braden [Page 30]

RFC 1644 Transaction/TCP July 1994

 4.2 Minimal Packet Sequence

 Most TCP implementations will require some small modifications to
 allow the minimal packet sequence for a transaction shown in
 Figure 2.

 Many TCP implementations contain a mechanism to delay
 acknowledgments of some subset of the data segments, to cut down
 on the number of acknowledgment segments and to allow piggybacking
 on the reverse data flow (typically character echoes). To obtain
 minimal packet exchanges for transactions, it is necessary to
 delay the acknowledgment of some control bits, in an analogous
 manner. In particular, the <SYN,ACK> segment that is to be sent
 in ESTABLISHED* or CLOSE-WAIT* state should be delayed. Note that
 the amount of delay is determined by the minimum RTO at the
 transmitter; it is a parameter of the communication protocol,
 independent of the application. We propose to use the same delay
 parameter (and if possible, the same mechanism) that is used for
 delaying data acknowledgments.

 To get the FIN piggy-backed on the reply data (segment #3 in
 Figure 2), thos implementations that have an implied PUSH=YES on
 all SEND calls will need to augment the user interface so that
 PUSH=NO can be set for transactions.

 4.3 RTT Measurement

 Transactions introduce new issues into the problem of measuring
 round trip times [Jacobson88].

 (a) With the minimal 3-segment exchange, there can be exactly one
 RTT measurement in each direction for each transaction.
 Since dynamic estimation of RTT cannot take place within a
 single transaction, it must take place across successive
 transactions. Therefore, cacheing the measured RTT and RTT
 variance values is essential for transaction processing; in
 normal virtual circuit communication, such cacheing is only
 desirable.

 (b) At the completion of a transaction, the values for RTT and
 RTT variance that are retained in the cache must be some
 average of previous values with the values measured during
 the transaction that is completing. This raises the question
 of the time constant for this average; quite different
 dynamic considerations hold for transactions than for file
 transfers, for example.

 (c) An RTT measurement by the client will yield the value:

Braden [Page 31]

RFC 1644 Transaction/TCP July 1994

 T = RTT + min(SPT, ATO),

 where SPT (server processing time) was defined in the
 introduction, and ATO is the timeout period for sending a
 delayed ACK. Thus, the measured RTT includes SPT, which may
 be arbitrarily variable; however, the resulting variability
 of the measured T cannot exceed ATO. (In a popular TCP
 implementation, for example, ATO = 200ms, so that the
 variance of SPT makes a relatively small contribution to the
 variance of RTT.)

 (d) Transactions sample the RTT at random times, which are
 determined by the client and the server applications rather
 than by the network dynamics. When there are long pauses
 between transactions, cached path properties will be poor
 predictors of current values in the network.

 Thus, the dynamics of RTT measurement for transactions differ from
 those for virtual circuits. RTT measurements should work
 correctly for very short connections but reduce to the current TCP
 algorithms for long-lasting connections. Further study is this
 issue is needed.

 4.4 Cache Implementation

 This extension requires a per-host cache of connection counts.
 This cache may also contain values of the smoothed RTT, RTT
 variance, congestion avoidance threshold, and MSS values.
 Depending upon the implementation details, it may be simplest to
 build a new cache for these values; another possibility is to use
 the routing cache that should already be included in the host
 [RFC-1122].

 Implementation of the cache may be simplified because it is
 consulted only when a connection is established; thereafter, the
 CC values relevant to the connection are kept in the TCB. This
 means that a cache entry may be safely reused during the lifetime
 of a connection, avoiding the need for locking.

 4.5 CPU Performance

 TCP implementations are customarily optimized for streaming of
 data at high speeds, not for opening or closing connections.
 Jacobson’s Header Prediction algorithm [Jacobson90] handles the
 simple common cases of in-sequence data and ACK segments when
 streaming data. To provide good performance for transactions, an
 implementation might be able to do an analogous "header
 prediction" specifically for the minimal request and the response

Braden [Page 32]

RFC 1644 Transaction/TCP July 1994

 segments.

 The overhead of UDP provides a lower bound on the overhead of
 TCP-based transaction processing. It will probably not be
 possible to reach this bound for TCP transactions, since opening a
 TCP connection involves creating a significant amount of state
 that is not required by UDP.

 McKenney and Dove [McKenney92] have pointed out that transaction
 processing applications of TCP can stress the performance of the
 demultiplexing algorithm, i.e., the algorithm used to look up the
 TCB when a segment arrives. They advocate the use of hash-table
 techniques rather than a linear search. The effect of
 demultiplexing on performance may become especially acute for a
 transaction client using the extended TCP described here, due to
 TCB’s left in TIME-WAIT state. A high rate of transactions from a
 given client will leave a large number of TCB’s in TIME-WAIT
 state, until their timeout expires. If the TCP implementation
 uses a linear search for demultiplexing, all of these control
 blocks must be traversed in order to discover that the new
 association does not exist. In this circumstance, performance of
 a hash table lookup should not degrade severely due to
 transactions.

 4.6 Pre-SYN Queue

 Suppose that segment #1 in Figure 4 is lost in the network; when
 segment #2 arrives in LISTEN state, it will be ignored by the TCP
 rules (see [STD-007] p.66, "fourth other text and control"), and
 must be retransmitted. It would be possible for the server side
 to queue any ACK-less data segments received in LISTEN state and
 to "replay" the segments in this queue when a SYN segment does
 arrive. A data segment received with an ACK bit, which is the
 normal case for existing TCP’s, would still a generate RST
 segment.

 Note that queueing segments in LISTEN state is different from
 queueing out-of-order segments after the connection is
 synchronized. In LISTEN state, the sequence number corresponding
 to the left window edge is not yet known, so that the segment
 cannot be trimmed to fit within the window before it is queued.
 In fact, no processing should be done on a queued segment while
 the connection is still in LISTEN state. Therefore, a new "pre-
 SYN queue" would be needed. A timeout would be required, to flush
 the Pre-SYN Queue in case a SYN segment was not received.

 Although implementation of a pre-SYN queue is not difficult in BSD
 TCP, its limited contribution to throughput probably does not

Braden [Page 33]

RFC 1644 Transaction/TCP July 1994

 justify the effort.

6. ACKNOWLEDGMENTS

 I am very grateful to Dave Clark for pointing out bugs in RFC-1379
 and for helping me to clarify the model. I also wish to thank Greg
 Minshall, whose probing questions led to further elucidation of the
 issues in T/TCP.

7. REFERENCES

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control", ACM
 SIGCOMM ’88, Stanford, CA, August 1988.

 [Jacobson90] Jacobson, V., "4BSD Header Prediction", Comp Comm
 Review, v. 20, no. 2, April 1990.

 [McKenney92] McKenney, P., and K. Dove, "Efficient Demultiplexing
 of Incoming TCP Packets", ACM SIGCOMM ’92, Baltimore, MD, October
 1992.

 [RFC-1122] Braden, R., Ed., "Requirements for Internet Hosts --
 Communications Layers", STD-3, RFC-1122, USC/Information Sciences
 Institute, October 1989.

 [RFC-1323] Jacobson, V., Braden, R., and D. Borman, "TCP Extensions
 for High Performance, RFC-1323, LBL, USC/Information Sciences
 Institute, Cray Research, February 1991.

 [RFC-1379] Braden, R., "Transaction TCP -- Concepts", RFC-1379,
 USC/Information Sciences Institute, September 1992.

 [ShankarLee93] Shankar, A. and D. Lee, "Modulo-N Incarnation
 Numbers for Cache-Based Transport Protocols", Report CS-TR-3046/
 UIMACS-TR-93-24, University of Maryland, March 1993.

 [STD-007] Postel, J., "Transmission Control Protocol - DARPA
 Internet Program Protocol Specification", STD-007, RFC-793,
 USC/Information Sciences Institute, September 1981.

Braden [Page 34]

RFC 1644 Transaction/TCP July 1994

APPENDIX A. ALGORITHM SUMMARY

 This appendix summarizes the additional processing rules introduced
 by T/TCP. We define the following symbols:

 Options

 CC(SEG.CC): TCP Connection Count (CC) Option
 CC.NEW(SEG.CC): TCP CC.NEW option
 CC.ECHO(SEG.CC): TCP CC.ECHO option

 Here SEG.CC is option value in segment.

 Per-Connection State Variables in TCB

 CCsend: CC value to be sent in segments
 CCrecv: CC value to be received in segments
 Elapsed: Duration of connection

 Global Variables:

 CCgen: CC generator variable
 cache.CC[fh]: Cache entry: Last CC value received.
 cache.CCsent[fh]: Cache entry: Last CC value sent.

 PSEUDO-CODE SUMMARY:

 Passive OPEN => {
 Create new TCB;
 }

 Active OPEN => {
 <Create new TCB>
 CCrecv = 0;
 CCsend = CCgen;
 If (CCgen == 0xffffffff) then Set CCgen = 1;
 else Set CCgen = CCgen + 1.
 <Send initial {SYN} segment (see below)>
 }

 Send initial {SYN} segment => {

 If (cache.CCsent[fh] == 0 OR CCsend < cache.CCsent[fh]) then {

 Include CC.NEW(CCsend) option in segment;
 Set cache.CCsent[fh] = 0;

Braden [Page 35]

RFC 1644 Transaction/TCP July 1994

 }
 else {

 Include CC(CCsend) option in segment;
 Set cache.CCsent[fh] = CCsend;
 }
 }

 Send {SYN,ACK} segment => {

 If (CCrecv != 0) then
 Include CC(CCsend), CC.ECHO(CCrecv) options in segment.
 }

 Receive {SYN} segment in LISTEN, SYN-SENT, or SYN-SENT* state => {

 If state == LISTEN then {
 CCrecv = 0;
 CCsend = CCgen;
 If (CCgen == 0xffffffff) then Set CCgen = 1;
 else Set CCgen = CCgen + 1.
 }

 If (Segment contains CC option OR
 Segment contains CC.NEW option) then
 Set CCrecv = SEG.CC.

 if (Segment contains CC option AND
 cache.CC[fh] != 0 AND
 SEG.CC > cache.CC[fh]) then { /* TAO Test OK */

 Set cache.CC[fh] = CCrecv;
 <Mark connection half-synchronized>
 <Process data and/or FIN and return>
 }

 If (Segment does not contain CC option) then
 Set cache.CC[fh] = 0;

 <Do normal TCP processing and return>.
 }

 Receive {SYN} segment in LISTEN-TW, LISTEN-LA, LISTEN-LA*, LISTEN-CL,
 or LISTEN-CL* state => {

Braden [Page 36]

RFC 1644 Transaction/TCP July 1994

 If ((Segment contains CC option AND CCrecv != 0) then {

 If (state = LISTEN-TW AND Elapsed > MSL) then
 <Send RST, drop segment, and return>.

 if (SEG.CC > CCrecv) then {
 <Implicitly ACK FIN and data in retransmission queue>;
 <Close and delete TCB>;
 <Reprocess segment>.
 /* Expect to match new TCB
 * in LISTEN state.
 */
 }
 }
 else
 <Drop segment>.
 }

 Receive {SYN,ACK} segment => {

 if (Segment contains CC.ECHO option AND
 SEG.CC != CCsend) then
 <Send a reset and discard segment>.

 if (Segment contains CC option) then {
 Set CCrecv = SEG.CC.

 if (cache.CC[fh] is undefined) then
 Set cache.CC[fh] = CCrecv.
 }
 }

 Send non-SYN segment => {

 if (CCrecv != 0 OR
 (cache.CCsent[fh] != 0 AND
 state is SYN-SENT or SYN-SENT*)) then
 Include CC(CCsend) option in segment.
 }

 Receive non-SYN segment in SYN-RECEIVED state => {

 if (Segment contains CC option AND RST bit is off) {
 if (SEG.CC != CCrecv) then
 <Segment is unacceptable; drop it and send an

Braden [Page 37]

RFC 1644 Transaction/TCP July 1994

 ACK segment, as in normal TCP processing>.

 if (cache.CC[fh] is undefined) then
 Set cache.CC[fh] = CCrecv.
 }
 }

 Receive non-SYN segment in (state >= ESTABLISHED) => {

 if (Segment contains CC option AND RST bit is off) {
 if (SEG.CC != CCrecv) then
 <Segment is unacceptable; drop it and send an
 ACK segment, as in normal TCP processing>.
 }
 }

Security Considerations

 Security issues are not discussed in this memo.

Author’s Address

 Bob Braden
 University of Southern California
 Information Sciences Institute
 4676 Admiralty Way
 Marina del Rey, CA 90292

 Phone: (310) 822-1511
 EMail: Braden@ISI.EDU

Braden [Page 38]

